Home
Class 14
MATHS
((5.624)^(3)+(4.376)^(3))/(5.624xx5.624-...

`((5.624)^(3)+(4.376)^(3))/(5.624xx5.624-(5.624xx4.376)+4.376xx4.376)` is equal to

A

`10`

B

`1.248`

C

`20.44`

D

`1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{(5.624)^3 + (4.376)^3}{(5.624)^2 - (5.624)(4.376) + (4.376)^2}\), we can use the identities for the sum of cubes and the quadratic form. ### Step-by-Step Solution: 1. **Identify Variables**: Let \( a = 5.624 \) and \( b = 4.376 \). 2. **Recognize the Formulas**: We can use the formulas: - Sum of cubes: \( a^3 + b^3 = (a + b)(a^2 - ab + b^2) \) - The denominator can be rewritten as \( a^2 - ab + b^2 \). 3. **Rewrite the Expression**: The expression can be rewritten as: \[ \frac{a^3 + b^3}{a^2 - ab + b^2} = \frac{(a + b)(a^2 - ab + b^2)}{a^2 - ab + b^2} \] 4. **Cancel Common Terms**: Since \( a^2 - ab + b^2 \) is in both the numerator and the denominator, we can cancel it out (as long as it is not zero): \[ = a + b \] 5. **Calculate \( a + b \)**: Now, substitute back the values of \( a \) and \( b \): \[ a + b = 5.624 + 4.376 = 10 \] 6. **Final Answer**: Therefore, the value of the original expression is: \[ \boxed{10} \]
Promotional Banner

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -V|53 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VI|17 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -III|52 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

((5.624)^(3) + (4.376)^(3))/(5.624 xx 5.624 - (5.624 xx 4.376) + 4.376 xx 4.376) is equal to

The value of ((253)^3+(247)^3)/(25.3xx25.3- 624.91+24.7xx24.7) is 50xx10^k , where the value of k is : ((253)^3+(247)^3)/(25.3xx25.3- 624.91+24.7xx24.7) का मान 50xx10^k है, जहाँ k का मान है :

3xx10^(5) + 4xx10^(3) + 7xx10^(2) + 5 is equal to

(4.5xx3.7+4.5xx6.3)/(1.5xx8.4-1.5xx7.4)=?

If 5xx4=15,7xx8=49 and 6xx5= 24 , then 8xx4 is equal to :

sqrt((0.081xx0.324xx4.624)/(1.5625xx0.0289xx72.9xx64)) is equal to a.0.024 b.0.24c.2.4d..24

3 xx 10^(5) + 4 xx 10^(3) + 7 xx 10^(2) + 5 is equal to

-4 times -3 times 5 is equal to:

KIRAN PUBLICATION-POWER, INDICES AND SURDS-Type -IV
  1. (137xx137+133xx133+18221)/(137xx137xx137-133xx133xx133) is equal to

    Text Solution

    |

  2. The value of (3xx9^(n+1)+9xx3^(2n-1))/(9xx3^(2n)-6xx9^(n-1)) is equal ...

    Text Solution

    |

  3. ((5.624)^(3)+(4.376)^(3))/(5.624xx5.624-(5.624xx4.376)+4.376xx4.376) i...

    Text Solution

    |

  4. The value of [((0.337+0.126)^(2)-(0.337-0.126)^(2))/(0.337xx0.126)] is

    Text Solution

    |

  5. (256xx256-144xx144)/(112) is equal to

    Text Solution

    |

  6. [8.7xx8.7+2xx8.7xx1.3+1.3xx1.3] is equal to

    Text Solution

    |

  7. The value of ((2+sqrt(3))/(2-sqrt(3))-4sqrt(3))^(2) is

    Text Solution

    |

  8. (3.25xx3.25+1.75xx1.75-2xx3.25xx1.75)/(3.25xx3.25-1.75xx1.75) is

    Text Solution

    |

  9. ((0.05)^(2)+(0.41)^(2)+(0.073)^(2))/((0.005)^(2)+(0.041)^(2)+(0.0073)^...

    Text Solution

    |

  10. (2.3xx2.3xx2.3-1)/(2.3xx2.3+2.3+1) is equal to

    Text Solution

    |

  11. The value of (0.98)^(3) + (0.02)^(3) + 3 xx 0.98 xx 0.02 - 1 is :

    Text Solution

    |

  12. Simplify : root(3)(-2197)xxroot(3)(-125)+root(3)((27)/(512))

    Text Solution

    |

  13. On simplification the value of 1-(1)/(1+sqrt(2))+(1)/(1-sqrt(2)) is

    Text Solution

    |

  14. (2.4xx10^(3))-:(8xx10^(-2)) equals

    Text Solution

    |

  15. [3-4(3-4)^(-1)]^(-1) is equal to :

    Text Solution

    |

  16. ((998)^(2) - (997)^(2) - 45)/((98)^(2) - (97)^(2)) equals

    Text Solution

    |

  17. Evaluate : (sqrt(24)+sqrt(6))/(sqrt(24)-sqrt(6))

    Text Solution

    |

  18. 55^(3)+17^(3)-72^(3)+201960 is equal to

    Text Solution

    |

  19. The simplest value of (3sqrt(8)-2sqrt(12)+sqrt(20))/(3sqrt(18)-2sqrt(2...

    Text Solution

    |

  20. Find the value of ((243)^((n)/(5))xx3^(2n+1))/(9^(n)xx3^(n-1))

    Text Solution

    |