Home
Class 14
MATHS
(256xx256-144xx144)/(112) is equal to...

`(256xx256-144xx144)/(112)` is equal to

A

a) `420`

B

b) `400`

C

c) `360`

D

d) `320`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((256 \times 256 - 144 \times 144) / 112\), we can use the difference of squares formula, which states that \(a^2 - b^2 = (a + b)(a - b)\). ### Step-by-Step Solution: 1. **Identify \(a\) and \(b\)**: - Let \(a = 256\) and \(b = 144\). 2. **Write the expression in terms of \(a\) and \(b\)**: \[ 256 \times 256 - 144 \times 144 = a^2 - b^2 \] 3. **Apply the difference of squares formula**: \[ a^2 - b^2 = (a + b)(a - b) \] Thus, \[ 256^2 - 144^2 = (256 + 144)(256 - 144) \] 4. **Calculate \(a + b\) and \(a - b\)**: - \(a + b = 256 + 144 = 400\) - \(a - b = 256 - 144 = 112\) 5. **Substitute back into the expression**: \[ (256^2 - 144^2) = (400)(112) \] 6. **Now, substitute this into the original expression**: \[ \frac{(400)(112)}{112} \] 7. **Simplify the expression**: - The \(112\) in the numerator and denominator cancels out: \[ 400 \] ### Final Answer: \[ \frac{(256 \times 256 - 144 \times 144)}{112} = 400 \]
Promotional Banner

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -V|53 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VI|17 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -III|52 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

(256 xx 256 - 144 xx 144)/(112) is equal to

(256×256−144×144)/112 is equal to (a) 420 (b) 400 (c) 360 (d) 320

(256)^(0.16) xx (16)^(0.18) is equal to

sqrt(4+ sqrt(144)) is equal to :

If log_(x)((9)/(16))=-(1)/(2), then x is equal to a.-(3)/(4) b.(3)/(4) c.(81)/(256)d.(256)/(81)

KIRAN PUBLICATION-POWER, INDICES AND SURDS-Type -IV
  1. ((5.624)^(3)+(4.376)^(3))/(5.624xx5.624-(5.624xx4.376)+4.376xx4.376) i...

    Text Solution

    |

  2. The value of [((0.337+0.126)^(2)-(0.337-0.126)^(2))/(0.337xx0.126)] is

    Text Solution

    |

  3. (256xx256-144xx144)/(112) is equal to

    Text Solution

    |

  4. [8.7xx8.7+2xx8.7xx1.3+1.3xx1.3] is equal to

    Text Solution

    |

  5. The value of ((2+sqrt(3))/(2-sqrt(3))-4sqrt(3))^(2) is

    Text Solution

    |

  6. (3.25xx3.25+1.75xx1.75-2xx3.25xx1.75)/(3.25xx3.25-1.75xx1.75) is

    Text Solution

    |

  7. ((0.05)^(2)+(0.41)^(2)+(0.073)^(2))/((0.005)^(2)+(0.041)^(2)+(0.0073)^...

    Text Solution

    |

  8. (2.3xx2.3xx2.3-1)/(2.3xx2.3+2.3+1) is equal to

    Text Solution

    |

  9. The value of (0.98)^(3) + (0.02)^(3) + 3 xx 0.98 xx 0.02 - 1 is :

    Text Solution

    |

  10. Simplify : root(3)(-2197)xxroot(3)(-125)+root(3)((27)/(512))

    Text Solution

    |

  11. On simplification the value of 1-(1)/(1+sqrt(2))+(1)/(1-sqrt(2)) is

    Text Solution

    |

  12. (2.4xx10^(3))-:(8xx10^(-2)) equals

    Text Solution

    |

  13. [3-4(3-4)^(-1)]^(-1) is equal to :

    Text Solution

    |

  14. ((998)^(2) - (997)^(2) - 45)/((98)^(2) - (97)^(2)) equals

    Text Solution

    |

  15. Evaluate : (sqrt(24)+sqrt(6))/(sqrt(24)-sqrt(6))

    Text Solution

    |

  16. 55^(3)+17^(3)-72^(3)+201960 is equal to

    Text Solution

    |

  17. The simplest value of (3sqrt(8)-2sqrt(12)+sqrt(20))/(3sqrt(18)-2sqrt(2...

    Text Solution

    |

  18. Find the value of ((243)^((n)/(5))xx3^(2n+1))/(9^(n)xx3^(n-1))

    Text Solution

    |

  19. The simplified value of (sqrt(3)+1)(10+sqrt(12))(sqrt(12)-2)(5-sqrt(3)...

    Text Solution

    |

  20. The simplified value of (0.2)^(3)xx200+2000 "of" (0.2)^(2) is

    Text Solution

    |