Home
Class 14
MATHS
Simplify : root(3)(-2197)xxroot(3)(-125)...

Simplify : `root(3)(-2197)xxroot(3)(-125)+root(3)((27)/(512))`

A

`(492)/(7)`

B

`(523)/(8)`

C

`(554)/(7)`

D

`(571)/(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( \sqrt[3]{-2197} \times \sqrt[3]{-125} + \sqrt[3]{\frac{27}{512}} \), we will follow these steps: ### Step 1: Simplify each cube root 1. **Calculate \( \sqrt[3]{-2197} \)**: - Since \( 2197 = 13^3 \), we have: \[ \sqrt[3]{-2197} = -\sqrt[3]{2197} = -13 \] 2. **Calculate \( \sqrt[3]{-125} \)**: - Since \( 125 = 5^3 \), we have: \[ \sqrt[3]{-125} = -\sqrt[3]{125} = -5 \] 3. **Calculate \( \sqrt[3]{\frac{27}{512}} \)**: - Since \( 27 = 3^3 \) and \( 512 = 8^3 \), we have: \[ \sqrt[3]{\frac{27}{512}} = \frac{\sqrt[3]{27}}{\sqrt[3]{512}} = \frac{3}{8} \] ### Step 2: Substitute back into the expression Now substituting these values back into the original expression: \[ \sqrt[3]{-2197} \times \sqrt[3]{-125} + \sqrt[3]{\frac{27}{512}} = (-13) \times (-5) + \frac{3}{8} \] ### Step 3: Calculate the product Calculate the product: \[ (-13) \times (-5) = 65 \] ### Step 4: Combine the results Now we combine the results: \[ 65 + \frac{3}{8} \] ### Step 5: Convert 65 to a fraction To add these, we convert 65 into a fraction with a denominator of 8: \[ 65 = \frac{65 \times 8}{8} = \frac{520}{8} \] ### Step 6: Add the fractions Now we can add: \[ \frac{520}{8} + \frac{3}{8} = \frac{520 + 3}{8} = \frac{523}{8} \] ### Final Answer Thus, the simplified expression is: \[ \frac{523}{8} \] ---
Promotional Banner

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -V|53 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VI|17 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -III|52 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

Simplify : 5root(3)(250)+7root(3)(16)-14root(3)(54)

Simplify 8root(3)(16)+root(3)(54)+root(3)(250)

root(3)(6)xxroot(3)(6)xxroot(3)(6) =_______

root3((-512)/(729))=?

Simplify : (root6(27)-sqrt(6(3)/4))^(2)

root3(3-17/27)=

Evaluate: root(3)(288root(3)(72root(3)(27)))

KIRAN PUBLICATION-POWER, INDICES AND SURDS-Type -IV
  1. (2.3xx2.3xx2.3-1)/(2.3xx2.3+2.3+1) is equal to

    Text Solution

    |

  2. The value of (0.98)^(3) + (0.02)^(3) + 3 xx 0.98 xx 0.02 - 1 is :

    Text Solution

    |

  3. Simplify : root(3)(-2197)xxroot(3)(-125)+root(3)((27)/(512))

    Text Solution

    |

  4. On simplification the value of 1-(1)/(1+sqrt(2))+(1)/(1-sqrt(2)) is

    Text Solution

    |

  5. (2.4xx10^(3))-:(8xx10^(-2)) equals

    Text Solution

    |

  6. [3-4(3-4)^(-1)]^(-1) is equal to :

    Text Solution

    |

  7. ((998)^(2) - (997)^(2) - 45)/((98)^(2) - (97)^(2)) equals

    Text Solution

    |

  8. Evaluate : (sqrt(24)+sqrt(6))/(sqrt(24)-sqrt(6))

    Text Solution

    |

  9. 55^(3)+17^(3)-72^(3)+201960 is equal to

    Text Solution

    |

  10. The simplest value of (3sqrt(8)-2sqrt(12)+sqrt(20))/(3sqrt(18)-2sqrt(2...

    Text Solution

    |

  11. Find the value of ((243)^((n)/(5))xx3^(2n+1))/(9^(n)xx3^(n-1))

    Text Solution

    |

  12. The simplified value of (sqrt(3)+1)(10+sqrt(12))(sqrt(12)-2)(5-sqrt(3)...

    Text Solution

    |

  13. The simplified value of (0.2)^(3)xx200+2000 "of" (0.2)^(2) is

    Text Solution

    |

  14. The simplified value of (sqrt(6)+sqrt(10)-sqrt(21)-sqrt(35))(sqrt(6)-s...

    Text Solution

    |

  15. The value of (1)/(1+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4...

    Text Solution

    |

  16. (1)/(3-sqrt(8))-(1)/(sqrt(8)-sqrt(7))+(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(...

    Text Solution

    |

  17. If 2 + x sqrt(3) = (1)/( 2 + sqrt( 3)) then the simplest value ...

    Text Solution

    |

  18. The value of : sqrt((0.324xx0.081xx4.624)/(1.5625xx0.0289xx72.9xx64)) ...

    Text Solution

    |

  19. If (sqrt(7)-1)/(sqrt(7)+1)-(sqrt(7)+1)/(sqrt(7)-1)=a+sqrt(7)b then the...

    Text Solution

    |

  20. The value of (1)/(1+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4...

    Text Solution

    |