Home
Class 14
MATHS
The value of (1)/(1+sqrt(2))+(1)/(sqrt(2...

The value of `(1)/(1+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+(1)/(sqrt(4)+sqrt(5))+(1)/(sqrt(5)+sqrt(6))+(1)/(sqrt(6)+sqrt(7))+(1)/(sqrt(7)+sqrt(8))+(1)/(sqrt(8)+sqrt(9))` is

A

2

B

0

C

4

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \frac{1}{1+\sqrt{2}} + \frac{1}{\sqrt{2}+\sqrt{3}} + \frac{1}{\sqrt{3}+\sqrt{4}} + \frac{1}{\sqrt{4}+\sqrt{5}} + \frac{1}{\sqrt{5}+\sqrt{6}} + \frac{1}{\sqrt{6}+\sqrt{7}} + \frac{1}{\sqrt{7}+\sqrt{8}} + \frac{1}{\sqrt{8}+\sqrt{9}} \] we will simplify each term using the technique of rationalizing the denominator. ### Step 1: Simplify the first term \(\frac{1}{1+\sqrt{2}}\) Multiply the numerator and denominator by \(1 - \sqrt{2}\): \[ \frac{1(1 - \sqrt{2})}{(1+\sqrt{2})(1-\sqrt{2})} = \frac{1 - \sqrt{2}}{1 - 2} = \frac{1 - \sqrt{2}}{-1} = \sqrt{2} - 1 \] ### Step 2: Simplify the second term \(\frac{1}{\sqrt{2}+\sqrt{3}}\) Multiply the numerator and denominator by \(\sqrt{2} - \sqrt{3}\): \[ \frac{1(\sqrt{2} - \sqrt{3})}{(\sqrt{2}+\sqrt{3})(\sqrt{2}-\sqrt{3})} = \frac{\sqrt{2} - \sqrt{3}}{2 - 3} = \frac{\sqrt{2} - \sqrt{3}}{-1} = \sqrt{3} - \sqrt{2} \] ### Step 3: Simplify the third term \(\frac{1}{\sqrt{3}+\sqrt{4}}\) Multiply the numerator and denominator by \(\sqrt{3} - \sqrt{4}\): \[ \frac{1(\sqrt{3} - 2)}{(\sqrt{3}+\sqrt{4})(\sqrt{3}-\sqrt{4})} = \frac{\sqrt{3} - 2}{3 - 4} = \frac{\sqrt{3} - 2}{-1} = 2 - \sqrt{3} \] ### Step 4: Simplify the fourth term \(\frac{1}{\sqrt{4}+\sqrt{5}}\) Multiply the numerator and denominator by \(\sqrt{4} - \sqrt{5}\): \[ \frac{1(\sqrt{4} - \sqrt{5})}{(\sqrt{4}+\sqrt{5})(\sqrt{4}-\sqrt{5})} = \frac{2 - \sqrt{5}}{4 - 5} = \frac{2 - \sqrt{5}}{-1} = \sqrt{5} - 2 \] ### Step 5: Simplify the fifth term \(\frac{1}{\sqrt{5}+\sqrt{6}}\) Multiply the numerator and denominator by \(\sqrt{5} - \sqrt{6}\): \[ \frac{1(\sqrt{5} - \sqrt{6})}{(\sqrt{5}+\sqrt{6})(\sqrt{5}-\sqrt{6})} = \frac{\sqrt{5} - \sqrt{6}}{5 - 6} = \frac{\sqrt{5} - \sqrt{6}}{-1} = \sqrt{6} - \sqrt{5} \] ### Step 6: Simplify the sixth term \(\frac{1}{\sqrt{6}+\sqrt{7}}\) Multiply the numerator and denominator by \(\sqrt{6} - \sqrt{7}\): \[ \frac{1(\sqrt{6} - \sqrt{7})}{(\sqrt{6}+\sqrt{7})(\sqrt{6}-\sqrt{7})} = \frac{\sqrt{6} - \sqrt{7}}{6 - 7} = \frac{\sqrt{6} - \sqrt{7}}{-1} = \sqrt{7} - \sqrt{6} \] ### Step 7: Simplify the seventh term \(\frac{1}{\sqrt{7}+\sqrt{8}}\) Multiply the numerator and denominator by \(\sqrt{7} - \sqrt{8}\): \[ \frac{1(\sqrt{7} - \sqrt{8})}{(\sqrt{7}+\sqrt{8})(\sqrt{7}-\sqrt{8})} = \frac{\sqrt{7} - \sqrt{8}}{7 - 8} = \frac{\sqrt{7} - \sqrt{8}}{-1} = \sqrt{8} - \sqrt{7} \] ### Step 8: Simplify the eighth term \(\frac{1}{\sqrt{8}+\sqrt{9}}\) Multiply the numerator and denominator by \(\sqrt{8} - \sqrt{9}\): \[ \frac{1(\sqrt{8} - 3)}{(\sqrt{8}+\sqrt{9})(\sqrt{8}-\sqrt{9})} = \frac{\sqrt{8} - 3}{8 - 9} = \frac{\sqrt{8} - 3}{-1} = 3 - \sqrt{8} \] ### Step 9: Combine all the simplified terms Now we can combine all the simplified terms: \[ (\sqrt{2} - 1) + (\sqrt{3} - \sqrt{2}) + (2 - \sqrt{3}) + (\sqrt{5} - 2) + (\sqrt{6} - \sqrt{5}) + (\sqrt{7} - \sqrt{6}) + (\sqrt{8} - \sqrt{7}) + (3 - \sqrt{8}) \] ### Step 10: Cancel out the terms Notice that most terms cancel out: - \(-1 + 2 - 2 + 3 = 2\) - The square root terms cancel out: \(\sqrt{2} - \sqrt{2} + \sqrt{3} - \sqrt{3} + \sqrt{5} - \sqrt{5} + \sqrt{6} - \sqrt{6} + \sqrt{7} - \sqrt{7} + \sqrt{8} - \sqrt{8} = 0\) Thus, the final value is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -V|53 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VI|17 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -III|52 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

(1)/(1+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+(1)/(sqrt(4)+sqrt(5))+(1)/(sqrt(5)+sqrt(6))+(1)/(sqrt(6)+sqrt(7))+(1)/(sqrt(7)+sqrt(8))+(1)/(sqrt(8)+sqrt(8))

Prove that (i) (1)/(3+sqrt(7)) + (1)/(sqrt(7)+sqrt(5))+(1)/(sqrt(5)+sqrt(3)) +(1)/(sqrt(3)+1)=1 (ii) (1)/(1+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+(1)/(sqrt(4)+sqrt(5))+(1)/(sqrt(5)+sqrt(6))+(1)/(sqrt(6)+sqrt(7)) +(1)/(sqrt(7)+sqrt(8))+(1)/(sqrt(8) + sqrt(9)) = 2

The value of (1)/(sqrt(4)+sqrt(5))+(1)/(sqrt(5)+sqrt(6))+(1)/(sqrt(6)+sqrt(7))+(1)/(sqrt(7)+sqrt(8))+(1)/(sqrt(8)+sqrt(9)) is

(1)/(sqrt(7)-sqrt(2))-(1)/(sqrt(7)+sqrt(2))=

(1)/(sqrt(9)-sqrt(8))-(1)/(sqrt(8)-sqrt(7))+(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)-sqrt(4))=?

(1)/(1+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+...(1)/(sqrt(99)+sqrt(100))

Prove that: 1/(1+sqrt(2))+1/(sqrt(2)+sqrt(3))+1/(sqrt(3)+sqrt(4))+1/(sqrt(4)+sqrt(5))+1/(sqrt(5)+sqrt(6))+1/(sqrt(6)+sqrt(7))+1/(sqrt(7)+sqrt(8))+1/(sqrt(8)+sqrt(9)) = 2

KIRAN PUBLICATION-POWER, INDICES AND SURDS-Type -IV
  1. The simplified value of (0.2)^(3)xx200+2000 "of" (0.2)^(2) is

    Text Solution

    |

  2. The simplified value of (sqrt(6)+sqrt(10)-sqrt(21)-sqrt(35))(sqrt(6)-s...

    Text Solution

    |

  3. The value of (1)/(1+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4...

    Text Solution

    |

  4. (1)/(3-sqrt(8))-(1)/(sqrt(8)-sqrt(7))+(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(...

    Text Solution

    |

  5. If 2 + x sqrt(3) = (1)/( 2 + sqrt( 3)) then the simplest value ...

    Text Solution

    |

  6. The value of : sqrt((0.324xx0.081xx4.624)/(1.5625xx0.0289xx72.9xx64)) ...

    Text Solution

    |

  7. If (sqrt(7)-1)/(sqrt(7)+1)-(sqrt(7)+1)/(sqrt(7)-1)=a+sqrt(7)b then the...

    Text Solution

    |

  8. The value of (1)/(1+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4...

    Text Solution

    |

  9. If (sqrt(a+2b)+sqrt(a-2b))/(sqrt(a+2b)-sqrt(a-2b))=sqrt(3), then a : b...

    Text Solution

    |

  10. Simplify : ((0.73)^(3)+(0.27)^(3))/((0.73)^(2)+(0.27)^(2)-(0.73)xx(0.2...

    Text Solution

    |

  11. If N=((sqrt(7)-sqrt(3)))/((sqrt(7)+sqrt(3))), then what is the value o...

    Text Solution

    |

  12. What is the simplified value of (2+1)(2^(2)+1)(2^(4)+1)(2^(8)+1) ?

    Text Solution

    |

  13. If N=((sqrt(6)-sqrt(5)))/((sqrt(6)+sqrt(5))) then what is the value of...

    Text Solution

    |

  14. What is the simplified value of (3+1)(3^(2)+1)(3^(4)+1)(3^(8)+1)(3^(16...

    Text Solution

    |

  15. What is the value of ((0.5)^(3)-(0.1)^(3))/((0.5)^(2)+0.5xx0.1+(0.1)^(...

    Text Solution

    |

  16. If (1)/(N)=((sqrt(6)+sqrt(5)))/((sqrt(6)-sqrt(5))), what is the value ...

    Text Solution

    |

  17. What is the value of ((1.1)^(3)+(0.7)^(3))/((1.1)^(2)-1.1xx0.7+(0.7)^(...

    Text Solution

    |

  18. What is the simplified value of (x^(128)+1)(x^(32)+1)(x^(64)+1)(x^(16)...

    Text Solution

    |

  19. What is the value of [(12)/((sqrt(5)+sqrt(3)))+(18)/((sqrt(5)-sqrt(3))...

    Text Solution

    |

  20. What is the value of x in the equation sqrt((1+x)/(x))-sqrt((x)/(1+x))...

    Text Solution

    |