Home
Class 14
MATHS
What is the value of sqrt(37+20sqrt(3)...

What is the value of
`sqrt(37+20sqrt(3))-sqrt(61+288sqrt(3))` ?

A

`-1`

B

1

C

2

D

`-2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sqrt{37 + 20\sqrt{3}} - \sqrt{61 + 28\sqrt{3}} \), we will simplify each square root separately. ### Step 1: Simplifying \( \sqrt{37 + 20\sqrt{3}} \) We want to express \( 37 + 20\sqrt{3} \) in the form of \( (a + b\sqrt{3})^2 \). 1. **Expand \( (a + b\sqrt{3})^2 \)**: \[ (a + b\sqrt{3})^2 = a^2 + 2ab\sqrt{3} + 3b^2 \] We want this to equal \( 37 + 20\sqrt{3} \). 2. **Set up equations**: - From \( a^2 + 3b^2 = 37 \) - From \( 2ab = 20 \) 3. **Solve for \( ab \)**: \[ ab = 10 \implies b = \frac{10}{a} \] 4. **Substituting \( b \) into the first equation**: \[ a^2 + 3\left(\frac{10}{a}\right)^2 = 37 \] \[ a^2 + \frac{300}{a^2} = 37 \] Multiply through by \( a^2 \): \[ a^4 - 37a^2 + 300 = 0 \] Let \( x = a^2 \): \[ x^2 - 37x + 300 = 0 \] 5. **Using the quadratic formula**: \[ x = \frac{37 \pm \sqrt{37^2 - 4 \cdot 300}}{2} \] \[ x = \frac{37 \pm \sqrt{1369 - 1200}}{2} \] \[ x = \frac{37 \pm \sqrt{169}}{2} \] \[ x = \frac{37 \pm 13}{2} \] This gives \( x = 25 \) or \( x = 12 \). 6. **Finding \( a \) and \( b \)**: - If \( x = 25 \): \( a = 5 \), \( b = 2 \) (since \( ab = 10 \)). - If \( x = 12 \): \( a = 2\sqrt{3} \), \( b = 5 \) (not applicable here). Thus, we have: \[ \sqrt{37 + 20\sqrt{3}} = 5 + 2\sqrt{3} \] ### Step 2: Simplifying \( \sqrt{61 + 28\sqrt{3}} \) 1. **Set up similar equations**: - We want \( 61 + 28\sqrt{3} = (c + d\sqrt{3})^2 \). - From \( c^2 + 3d^2 = 61 \) - From \( 2cd = 28 \) implies \( cd = 14 \). 2. **Solving for \( d \)**: \[ d = \frac{14}{c} \] Substitute into the first equation: \[ c^2 + 3\left(\frac{14}{c}\right)^2 = 61 \] \[ c^2 + \frac{588}{c^2} = 61 \] Multiply through by \( c^2 \): \[ c^4 - 61c^2 + 588 = 0 \] Let \( y = c^2 \): \[ y^2 - 61y + 588 = 0 \] 3. **Using the quadratic formula**: \[ y = \frac{61 \pm \sqrt{61^2 - 4 \cdot 588}}{2} \] \[ y = \frac{61 \pm \sqrt{3721 - 2352}}{2} \] \[ y = \frac{61 \pm \sqrt{1369}}{2} \] \[ y = \frac{61 \pm 37}{2} \] This gives \( y = 49 \) or \( y = 12 \). 4. **Finding \( c \) and \( d \)**: - If \( y = 49 \): \( c = 7 \), \( d = 2 \) (since \( cd = 14 \)). - If \( y = 12 \): \( c = 2\sqrt{3} \), \( d = 5 \) (not applicable here). Thus, we have: \[ \sqrt{61 + 28\sqrt{3}} = 7 + 2\sqrt{3} \] ### Step 3: Final Calculation Now, we can substitute back into the original expression: \[ \sqrt{37 + 20\sqrt{3}} - \sqrt{61 + 28\sqrt{3}} = (5 + 2\sqrt{3}) - (7 + 2\sqrt{3}) \] \[ = 5 + 2\sqrt{3} - 7 - 2\sqrt{3} = -2 \] ### Final Answer The value of \( \sqrt{37 + 20\sqrt{3}} - \sqrt{61 + 28\sqrt{3}} \) is \( -2 \). ---
Promotional Banner

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -V|53 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VI|17 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -III|52 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

What is the value of sqrt(7 + 4sqrt(3))?

What is the value of sqrt(7 + 4sqrt(3))?

Find the value of sqrt(3+sqrt(5))-sqrt(2+sqrt(3))

Find the value of sqrt(3+sqrt(5))-sqrt(2+sqrt(3))

The value of sqrt(2 + sqrt(3)) + sqrt(2 - sqrt(3)) is

What is the value (sqrt(5)-sqrt(3))/(sqrt(5) + sqrt(3)) - (sqrt(5) + sqrt(3))/(sqrt(5) - sqrt(3)) ?

KIRAN PUBLICATION-POWER, INDICES AND SURDS-Type -IV
  1. What is the simplified value of 3+sqrt(3)+(1)/(3-sqrt(3))+(1)/(3+sqrt(...

    Text Solution

    |

  2. If 165^(2)=27225, then what is the value of sqrt(272.25)+sqrt(2.7225)...

    Text Solution

    |

  3. What is the value of sqrt(37+20sqrt(3))-sqrt(61+288sqrt(3)) ?

    Text Solution

    |

  4. If 3^(x+3)+3^(x-2)=244, what is the value of x ?

    Text Solution

    |

  5. Which of the following statement (s) is /are True ? I. sqrt((64))+sq...

    Text Solution

    |

  6. Which of the following statement (s) is/ are TRUE ? I. (0.7)^(2)+(0....

    Text Solution

    |

  7. If a=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) and b=(sqrt(3)-sqrt(2))/(sqrt...

    Text Solution

    |

  8. What is the value of (5)/(sqrt(2)+1)+(5)/(sqrt(3)+sqrt(2))+(5)/(sqrt(4...

    Text Solution

    |

  9. What is the value of sqrt(3^(4)+12^(2))

    Text Solution

    |

  10. What is the value of 13xx(49)^((3)/(2)) ?

    Text Solution

    |

  11. What is the value of sqrt(2^(6)+15^(2)) ?

    Text Solution

    |

  12. What is the value of (1)/((0.1)^(2))+(1)/((0.01)^(2))+(1)/((0.2)^(2))+...

    Text Solution

    |

  13. If N=3^(14)+3^(13)-12, then what is the largest prime factor of N ?

    Text Solution

    |

  14. Which of the following statements is/are TRUE ? I. sqrt(121)+sqrt(1...

    Text Solution

    |

  15. What is the value of (2+sqrt(2))+((1)/(2+sqrt(2))+((1)/(2-sqrt(2)))+(2...

    Text Solution

    |

  16. What is the value of sqrt(513-sqrt(144)-sqrt(81)-sqrt(64)) ?

    Text Solution

    |

  17. Find the value of root3((4913)/(2197)).

    Text Solution

    |

  18. What is the value of (sqrt(96)+sqrt(216))/(sqrt(24)) ?

    Text Solution

    |

  19. If 3sqrt(7)+sqrt(343)=19.21, then find the value of sqrt(252)+20sqrt(7...

    Text Solution

    |

  20. If sqrt(20)+sqrt(125)=15.65, then what is the value of sqrt(45)+sqrt(5...

    Text Solution

    |