Home
Class 14
MATHS
If a=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2))...

If `a=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2))` and `b=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2))`, then what is the value of `(a^(2)+b^(2)-ab)`?

A

`97`

B

`(2sqrt(3))+2`

C

`(4sqrt(6))+1`

D

`98`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a^2 + b^2 - ab \) given: \[ a = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}} \] \[ b = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}} \] ### Step 1: Find the product \( ab \) First, let's calculate \( ab \): \[ ab = \left( \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}} \right) \left( \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}} \right) \] Notice that the terms in the numerator and denominator will cancel out: \[ ab = \frac{(\sqrt{3} + \sqrt{2})(\sqrt{3} - \sqrt{2})}{(\sqrt{3} - \sqrt{2})(\sqrt{3} + \sqrt{2})} = 1 \] ### Step 2: Express \( b \) in terms of \( a \) Since \( ab = 1 \), we can express \( b \) as: \[ b = \frac{1}{a} \] ### Step 3: Calculate \( a^2 + b^2 \) Using the expression for \( b \): \[ b^2 = \left(\frac{1}{a}\right)^2 = \frac{1}{a^2} \] Now, we can find \( a^2 + b^2 \): \[ a^2 + b^2 = a^2 + \frac{1}{a^2} \] ### Step 4: Use the identity for \( a^2 + b^2 \) We can use the identity: \[ a^2 + b^2 = (a + b)^2 - 2ab \] Since \( ab = 1 \), we have: \[ a^2 + b^2 = (a + b)^2 - 2 \] ### Step 5: Calculate \( a + b \) Now we need to find \( a + b \): \[ a + b = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}} + \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}} \] To combine these fractions, we find a common denominator: \[ a + b = \frac{(\sqrt{3} + \sqrt{2})^2 + (\sqrt{3} - \sqrt{2})^2}{(\sqrt{3} - \sqrt{2})(\sqrt{3} + \sqrt{2})} \] Calculating the numerator: \[ (\sqrt{3} + \sqrt{2})^2 = 3 + 2 + 2\sqrt{6} = 5 + 2\sqrt{6} \] \[ (\sqrt{3} - \sqrt{2})^2 = 3 + 2 - 2\sqrt{6} = 5 - 2\sqrt{6} \] Adding these: \[ (5 + 2\sqrt{6}) + (5 - 2\sqrt{6}) = 10 \] Now, the denominator: \[ (\sqrt{3} - \sqrt{2})(\sqrt{3} + \sqrt{2}) = 3 - 2 = 1 \] Thus: \[ a + b = 10 \] ### Step 6: Substitute back to find \( a^2 + b^2 \) Now substitute \( a + b \) back into our earlier expression: \[ a^2 + b^2 = (10)^2 - 2 = 100 - 2 = 98 \] ### Step 7: Calculate \( a^2 + b^2 - ab \) Finally, we find: \[ a^2 + b^2 - ab = 98 - 1 = 97 \] ### Final Answer Thus, the value of \( a^2 + b^2 - ab \) is: \[ \boxed{97} \]
Promotional Banner

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -V|53 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VI|17 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -III|52 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

If a=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) and b=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) , then find the value of 3(a^(2)-b^(2)) .

If a = (sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2)) and b = (sqrt(3) - sqrt(2))/(sqrt(3) + sqrt(2)) , then value of a^(2) + b^(2) is

if a=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)),b=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2))

If x=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) and y=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)), then find the value of x^(2)+y^(2)

If a=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) and b=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)), find the value of a^(2)+ab+b^(2)

If x=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) and y=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)), then the value of x^(3)+y^(3) is

If x=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) and y=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)), then the value of x^(3)+y^(3) is

If a=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)),b=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) then the value of a+b is

a=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)),b=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) then the value of (1)/(a^(2))+(1)/(b^(2))

KIRAN PUBLICATION-POWER, INDICES AND SURDS-Type -IV
  1. Which of the following statement (s) is /are True ? I. sqrt((64))+sq...

    Text Solution

    |

  2. Which of the following statement (s) is/ are TRUE ? I. (0.7)^(2)+(0....

    Text Solution

    |

  3. If a=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) and b=(sqrt(3)-sqrt(2))/(sqrt...

    Text Solution

    |

  4. What is the value of (5)/(sqrt(2)+1)+(5)/(sqrt(3)+sqrt(2))+(5)/(sqrt(4...

    Text Solution

    |

  5. What is the value of sqrt(3^(4)+12^(2))

    Text Solution

    |

  6. What is the value of 13xx(49)^((3)/(2)) ?

    Text Solution

    |

  7. What is the value of sqrt(2^(6)+15^(2)) ?

    Text Solution

    |

  8. What is the value of (1)/((0.1)^(2))+(1)/((0.01)^(2))+(1)/((0.2)^(2))+...

    Text Solution

    |

  9. If N=3^(14)+3^(13)-12, then what is the largest prime factor of N ?

    Text Solution

    |

  10. Which of the following statements is/are TRUE ? I. sqrt(121)+sqrt(1...

    Text Solution

    |

  11. What is the value of (2+sqrt(2))+((1)/(2+sqrt(2))+((1)/(2-sqrt(2)))+(2...

    Text Solution

    |

  12. What is the value of sqrt(513-sqrt(144)-sqrt(81)-sqrt(64)) ?

    Text Solution

    |

  13. Find the value of root3((4913)/(2197)).

    Text Solution

    |

  14. What is the value of (sqrt(96)+sqrt(216))/(sqrt(24)) ?

    Text Solution

    |

  15. If 3sqrt(7)+sqrt(343)=19.21, then find the value of sqrt(252)+20sqrt(7...

    Text Solution

    |

  16. If sqrt(20)+sqrt(125)=15.65, then what is the value of sqrt(45)+sqrt(5...

    Text Solution

    |

  17. What value of 'p' will satisfy the equation (p)/(sqrt(540))=(sqrt(240)...

    Text Solution

    |

  18. If x=(sqrt(5)+1)/(sqrt(5)-1) and y=(sqrt(5)-1)/(sqrt(5)+1), then find ...

    Text Solution

    |

  19. What is the simplified value of root3(3125)+4root3(25)+3root3(675) ?

    Text Solution

    |

  20. Find the value of [7(64^((1)/(3))+27^((1)/(3)))^(3)]^((1)/(4))

    Text Solution

    |