Home
Class 14
MATHS
If z=6-2sqrt(3), find the value of (sqrt...

If `z=6-2sqrt(3)`, find the value of `(sqrt(z)-(1)/(sqrt(z)))^(2)`

A

`(102-46sqrt(3))/(4)`

B

`(102-46sqrt(3))/(2)`

C

`(102-46sqrt(3))/(24)`

D

`(12-46sqrt(3))/(24)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( z = 6 - 2\sqrt{3} \) and we need to find the value of \( \left( \sqrt{z} - \frac{1}{\sqrt{z}} \right)^2 \), we can follow these steps: ### Step 1: Express the given expression We start with the expression: \[ \left( \sqrt{z} - \frac{1}{\sqrt{z}} \right)^2 \] ### Step 2: Use the formula for the square of a binomial We can expand this expression using the identity \( (a - b)^2 = a^2 - 2ab + b^2 \): \[ \left( \sqrt{z} - \frac{1}{\sqrt{z}} \right)^2 = z + \frac{1}{z} - 2 \] ### Step 3: Substitute the value of \( z \) Now we substitute \( z = 6 - 2\sqrt{3} \): \[ z + \frac{1}{z} - 2 \] ### Step 4: Calculate \( \frac{1}{z} \) To find \( \frac{1}{z} \), we rationalize: \[ \frac{1}{z} = \frac{1}{6 - 2\sqrt{3}} \cdot \frac{6 + 2\sqrt{3}}{6 + 2\sqrt{3}} = \frac{6 + 2\sqrt{3}}{(6 - 2\sqrt{3})(6 + 2\sqrt{3})} \] Calculating the denominator: \[ (6 - 2\sqrt{3})(6 + 2\sqrt{3}) = 36 - (2\sqrt{3})^2 = 36 - 12 = 24 \] Thus, \[ \frac{1}{z} = \frac{6 + 2\sqrt{3}}{24} = \frac{1}{4} + \frac{\sqrt{3}}{12} \] ### Step 5: Substitute \( z \) and \( \frac{1}{z} \) back into the expression Now we have: \[ z + \frac{1}{z} = (6 - 2\sqrt{3}) + \left( \frac{1}{4} + \frac{\sqrt{3}}{12} \right) \] Combine these: \[ = 6 - 2\sqrt{3} + \frac{1}{4} + \frac{\sqrt{3}}{12} \] ### Step 6: Combine the terms Convert \( 6 \) to a fraction with a common denominator: \[ 6 = \frac{24}{4} \] So, \[ z + \frac{1}{z} = \frac{24}{4} - 2\sqrt{3} + \frac{1}{4} + \frac{\sqrt{3}}{12} \] Combine the fractions: \[ = \frac{25}{4} - 2\sqrt{3} + \frac{\sqrt{3}}{12} \] To combine the square root terms, convert \( -2\sqrt{3} \) to have a common denominator of 12: \[ -2\sqrt{3} = -\frac{24\sqrt{3}}{12} \] Thus, \[ = \frac{25}{4} - \frac{24\sqrt{3}}{12} + \frac{\sqrt{3}}{12} = \frac{25}{4} - \frac{23\sqrt{3}}{12} \] ### Step 7: Final expression Now we substitute back into our expression: \[ \left( \sqrt{z} - \frac{1}{\sqrt{z}} \right)^2 = z + \frac{1}{z} - 2 = \left( \frac{25}{4} - \frac{23\sqrt{3}}{12} \right) - 2 \] Convert \( 2 \) to a fraction: \[ 2 = \frac{8}{4} \] Thus, the final expression becomes: \[ = \frac{25}{4} - \frac{8}{4} - \frac{23\sqrt{3}}{12} = \frac{17}{4} - \frac{23\sqrt{3}}{12} \] ### Final Result The final answer is: \[ \frac{17}{4} - \frac{23\sqrt{3}}{12} \]
Promotional Banner

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -V|53 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VI|17 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -III|52 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

If z=(1)/(2)(i sqrt(3)-1), then find the value of (z-z^(2)+2z^(3))(2-z+z^(2))

If z=4+i sqrt(7), then find the value of z^(2)-4z^(2)-9z+91

If z=(1+i)/(sqrt(2)), then the value of z^(1929) is

If z = (-2)/(1 + sqrt(3i)) , then the value of age z is

For z= sqrt3-i , find the principal, value arg(z)

1.If Z=(1+i)/(sqrt(2)) find the value of Z^(6)+Z^(4)+Z^(2) .

If z = (-4 +2 sqrt3i)/(5 +sqrt3i) , then the value of arg(z) is

If z = (sqrt(5)+3i) , find z^(-1) .

If x=sqrt(7)-sqrt(5),y=sqrt(5)-sqrt(3),z=sqrt(3)-sqrt(7) then find the value of x^(3)+y^(3)+z^(3)-2xyz

The value of Z is given by the following if z^(z sqrt(z))=(z sqrt(z))^(z)

KIRAN PUBLICATION-POWER, INDICES AND SURDS-Type -IV
  1. If x=(sqrt(5)+1)/(sqrt(5)-1) and y=(sqrt(5)-1)/(sqrt(5)+1), then find ...

    Text Solution

    |

  2. What is the simplified value of root3(3125)+4root3(25)+3root3(675) ?

    Text Solution

    |

  3. Find the value of [7(64^((1)/(3))+27^((1)/(3)))^(3)]^((1)/(4))

    Text Solution

    |

  4. What is the value of root3(512)+sqrt(169)+root3(216)+sqrt(225) ?

    Text Solution

    |

  5. Calculate the value of x if sqrt(1-((x)/(289)))=((15)/(17))

    Text Solution

    |

  6. Find the unit place digit in the given expression : (153)^(144)-(115)^...

    Text Solution

    |

  7. Which of the following value of x satisifies the equation : 4^(x-1).9^...

    Text Solution

    |

  8. If p+(1)/(p)=sqrt(10), find the value of p^(4)+(1)/(p^(4)).

    Text Solution

    |

  9. If z=6-2sqrt(3), find the value of (sqrt(z)-(1)/(sqrt(z)))^(2)

    Text Solution

    |

  10. What is the positive square root of [25+4sqrt(39)] ?

    Text Solution

    |

  11. What is the square root of ((sqrt(5)+2))/((sqrt(5)-2)) ?

    Text Solution

    |

  12. What is the value of [(sqrt(529))+(sqrt(5.29))+(sqrt(0.0529))] ?

    Text Solution

    |

  13. Calculate the value of x, if sqrt(1-((x)/(529)))=((16)/(23))

    Text Solution

    |

  14. Which of the following satements (s) is / are True ? I. sqrt(676)+sq...

    Text Solution

    |

  15. If x=(sqrt(2)+1)/(sqrt(2)-1) and y=(sqrt(2)-1)/(sqrt(2)+1) , what is t...

    Text Solution

    |

  16. Calculate the value of ((5^((1)/(4))-1)(5^((3)/(4))+5^((1)/(2))+5^((1)...

    Text Solution

    |

  17. Find 'x' if sqrt((2+7x))=sqrt((3x+4)).

    Text Solution

    |

  18. What is the positive square root of [19+4sqrt(21)] ?

    Text Solution

    |

  19. If 25^(x+y)=1 and 3^(4x+y)=(1)/(27), then find the value of xy.

    Text Solution

    |

  20. root3(a)=root3(9)+root3(126)+root3(217), then which of the following i...

    Text Solution

    |