Home
Class 14
MATHS
root3(a)=root3(9)+root3(126)+root3(217),...

`root3(a)=root3(9)+root3(126)+root3(217)`, then which of the following is correct ?

A

`a=2197`

B

`a gt 2197`

C

`a lt 2197`

D

`a lt 1728`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sqrt[3]{a} = \sqrt[3]{9} + \sqrt[3]{126} + \sqrt[3]{217} \), we will follow these steps: ### Step 1: Estimate the values of the cube roots First, we need to estimate the values of \( \sqrt[3]{9} \), \( \sqrt[3]{126} \), and \( \sqrt[3]{217} \). - \( \sqrt[3]{9} \) is slightly greater than \( 2 \) because \( 2^3 = 8 \). - \( \sqrt[3]{126} \) is slightly greater than \( 5 \) because \( 5^3 = 125 \). - \( \sqrt[3]{217} \) is slightly greater than \( 6 \) because \( 6^3 = 216 \). ### Step 2: Add the estimated values Now we can add these estimates together: \[ \sqrt[3]{9} + \sqrt[3]{126} + \sqrt[3]{217} > 2 + 5 + 6 = 13 \] Thus, we have: \[ \sqrt[3]{a} > 13 \] ### Step 3: Cube both sides Next, we cube both sides of the inequality: \[ a > 13^3 \] Calculating \( 13^3 \): \[ 13^3 = 2197 \] So, we have: \[ a > 2197 \] ### Step 4: Analyze the options Now we can analyze the options given: - \( a = 2197 \) - \( a > 2119 \) - \( a < 1728 \) From our calculation, we found that \( a > 2197 \). Therefore, the correct option is: - \( a > 2119 \) (since 2197 is greater than 2119). ### Conclusion The correct answer is that \( a \) is greater than 2119. ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -V|53 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VI|17 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -III|52 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

root3(-1331)

If root3(x)+(48)/(root3(x))=16 , then which of the following can be the value of x?

Knowledge Check

  • If root(3)(a)=root(3)(9)+root(3)(126)+root(3)(217) , then which of the following is CORRECT?

    A
    a=2197
    B
    `a gt 2197`
    C
    `a lt 2197`
    D
    `a lt 1728`
  • root3(512)=?

    A
    6
    B
    7
    C
    8
    D
    9
  • root3(144) xx root3(12) equals

    A
    12
    B
    14
    C
    13
    D
    6
  • Similar Questions

    Explore conceptually related problems

    root3(5832)=?

    (root3(3)+root3(2))(root3(9)+root3(4)-root3(6))=

    root3(1.728)/root3(13.824)xxroot3(4.096)/root3(216)=

    root3(3-17/27)=

    root3(0.125)+3=