Home
Class 12
MATHS
(A^(3))^(-1)=(A^(-1))^(3), where A is a ...

`(A^(3))^(-1)=(A^(-1))^(3)`, where A is a square matrix and `|A| ne 0`.

Text Solution

Verified by Experts

The correct Answer is:
1
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ACCURATE PUBLICATION|Exercise (Question carrying 2 marks)|21 Videos
  • DETERMINANTS

    ACCURATE PUBLICATION|Exercise (Question carrying 6 marks)|7 Videos
  • DETERMINANTS

    ACCURATE PUBLICATION|Exercise Type-II (Fill in the blanks questions)|31 Videos
  • DEFINITE INTEGRALS

    ACCURATE PUBLICATION|Exercise QUESTION CARRYING 4 MARKS|8 Videos
  • DIFFERENTAL QUATIONS

    ACCURATE PUBLICATION|Exercise QUESTIONS CARRYING 4 MARKS|41 Videos

Similar Questions

Explore conceptually related problems

|A^(-1)| ne |A|^(-1) , where A is non-singular matrix.

|adj.A|=|A|^(2) , where a is a square matrix of order two.

(aA)^(-1)=(1)/(a)A^(-1) , where a is any real number and A is a square matrix.

If A is square matrix order 3, then |(A - A')^2015| is

Let A=[(1,0,0),(1,0,1),(0,1,0)] satisfies A^(n)=A^(n-2)+A^(2)-I for n ge 3 . And trace of a square matrix X is equal to the sum of elements in its proncipal diagonal. Further consider a matrix underset(3xx3)(uu) with its column as uu_(1), uu_(2), uu_(3) such that A^(50) uu_(1)=[(1),(25),(25)], A^(50) uu_(2)=[(0),(1),(0)], A^(50) uu_(3)=[(0),(0),(1)] Then answer the following question : Trace of A^(50) equals

State true/false:IF A is square matrix then | A^-1| = 1/|A|

True or False : If A is a square matrix and |A| ne 0, then (A^3)^-1 = (A^-1)^3)

If A^(n) = 0 , then evaluate (i) I+A+A^(2)+A^(3)+…+A^(n-1) (ii) I-A + A^(2) - A^(3) +... + (-1) A^(n-1) for odd 'n' where I is the identity matrix having the same order of A.

Find the sum of n terms of the series (a+b)+(a^(2)+ab+b^(2))+(a^(3)+a^(2)b+ab^(2)+b^(3))+"......." where a ne 1,bne 1 and a ne b .

For the matrix ( A=[[-3,6,0],[4,-5,8],[0,-7,-2]] ), find ( 1/2(A-A') ), where A' is the transpose of matrix A.

ACCURATE PUBLICATION-DETERMINANTS-Type-III (True or False questions)
  1. If A=[{:(x,5,2),(2,y,3),(1,1,z):}], xyz=80, 3x+2y+10z=20, then A adj *...

    Text Solution

    |

  2. If A=[{:(0,1,3),(1,2,x),(2,3,1):}], A^(-1)=[{:((1)/(2),-4,(5)/(2)),(-(...

    Text Solution

    |

  3. (A^(3))^(-1)=(A^(-1))^(3), where A is a square matrix and |A| ne 0.

    Text Solution

    |

  4. (aA)^(-1)=(1)/(a)A^(-1), where a is any real number and A is a square ...

    Text Solution

    |

  5. |A^(-1)| ne |A|^(-1) , where A is non-singular matrix.

    Text Solution

    |

  6. If A and B are matrices of order 3 and |A|=5, |B|=3, then |3AB|=27xx5x...

    Text Solution

    |

  7. If the value of a third order determinant is 12, then the value of the...

    Text Solution

    |

  8. Without expanding the determinant at any stage, prove that {:|(x+1,x+2...

    Text Solution

    |

  9. |adj.A|=|A|^(2), where a is a square matrix of order two.

    Text Solution

    |

  10. The determinant |{:(sinA,cosA,sinA+cosB),(sinB,cosA,sinB+cosB),(sinC,c...

    Text Solution

    |

  11. If the determiant |{:(x+a,p+u,l+f),(y+b,q+v,m+g),(z+c,r+w,n+h):}| spli...

    Text Solution

    |

  12. Let Delta=|{:(a,p,x),(b,q,y),(c,r,z):}|=16, then Delta(1)=|{:(p+x,a+x,...

    Text Solution

    |

  13. Find the maximum value of : {:|(1,1,1),(1,1+sintheta,1),(1,1,1+costh...

    Text Solution

    |

  14. If A=[{:(3,4),(1,2):}], then the value of 3|A| is 6.

    Text Solution

    |

  15. If |{:(2x,x+3),(2(x+1),x+1):}|=|{:(1,5),(3,3):}|, then the value of x ...

    Text Solution

    |

  16. If A=({:(a,3),(3,a):}) and |A|^(3)=-125 , then a equals +2.

    Text Solution

    |

  17. The value of the determinant |{:(2,3,4),(5,6,8),(6x,9x,12x):}| is

    Text Solution

    |

  18. If A is a square matrix and |A|=2, then the value of |A A'| is 5.

    Text Solution

    |

  19. A matrix A of order 3xx3 is such that |A|=4. Then the value of |2A| is...

    Text Solution

    |

  20. The value of determinant |{:(2,a,abc),(2,b,abc),(2,c,abc):}| is 0.

    Text Solution

    |