Home
Class 12
MATHS
If x^16 . y^9 = (x^2 + y)^(17), prove th...

If `x^16 . y^9 = (x^2 + y)^(17)`, prove that `(dy)/(dx) = (2y)/x`.

Promotional Banner

Topper's Solved these Questions

  • SAMPLE QUESTION PAPER-V

    ACCURATE PUBLICATION|Exercise (SECTION-D)|6 Videos
  • SAMPLE QUESTION PAPER-V

    ACCURATE PUBLICATION|Exercise (SECTION-B)|8 Videos
  • SAMPLE QUESTION PAPER-IX

    ACCURATE PUBLICATION|Exercise SECTION-D|6 Videos
  • SAMPLE QUESTION PAPER-VI

    ACCURATE PUBLICATION|Exercise SECTION C|15 Videos

Similar Questions

Explore conceptually related problems

If x^16 y^9 = (x^2 + y)^17, Prove (dy)/(dx) = (2y)/(x)

If x=e^(x//y), prove that (dy)/(dx) = (x-y)/(xlogx)

IF [x^p y^q = (x+ y)^(p+q)] , prove that dy/dx = y/x.

If y = x^y , prove that (dy)/(dx) = (y^2)/(x(1 - y log x))

If xy = e^(x - y) , prove that (dy)/(dx) = (y (x - 1))/(x (y + 1))

If x^m y^n = (x+y)^(m+n) , prove that dy/dx = y/x and (d^2y)/(dx^2) = 0

If sin y = x cos (a + y) , prove that (dy)/(dx) = (cos^2 (a + y))/(cos a)

Differentiate the following w.r.t.x. y = x^(x^(x^( oo))) , prove that x (dy)/(dx) = (y^2)/(1 - y log x)