Home
Class 12
MATHS
Sum of the series n.1 + (n - 1).2 + (n ...

Sum of the series ` n.1 + (n - 1).2 + (n - 2).3 + …….1` is……………….

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the series \( n \cdot 1 + (n - 1) \cdot 2 + (n - 2) \cdot 3 + \ldots + 1 \), we can follow these steps: ### Step 1: Identify the general term of the series The \( r \)-th term of the series can be expressed as: \[ T_r = (n - r + 1) \cdot r \] where \( r \) ranges from 1 to \( n \). ### Step 2: Expand the general term Expanding the general term gives: \[ T_r = n \cdot r - r^2 + r \] This can be rewritten as: \[ T_r = n \cdot r - r^2 + r = n \cdot r - r^2 + r \] ### Step 3: Write the sum of the series The sum of the series \( S \) can be expressed as: \[ S = \sum_{r=1}^{n} T_r = \sum_{r=1}^{n} (n \cdot r - r^2 + r) \] ### Step 4: Separate the summation We can separate the summation into three parts: \[ S = n \sum_{r=1}^{n} r - \sum_{r=1}^{n} r^2 + \sum_{r=1}^{n} r \] ### Step 5: Use formulas for summation Using the formulas for the sum of the first \( n \) natural numbers and the sum of the squares of the first \( n \) natural numbers: 1. \( \sum_{r=1}^{n} r = \frac{n(n + 1)}{2} \) 2. \( \sum_{r=1}^{n} r^2 = \frac{n(n + 1)(2n + 1)}{6} \) Substituting these formulas into the expression for \( S \): \[ S = n \cdot \frac{n(n + 1)}{2} - \frac{n(n + 1)(2n + 1)}{6} + \frac{n(n + 1)}{2} \] ### Step 6: Combine the terms Combining the terms gives: \[ S = \frac{n(n + 1)}{2} \cdot n - \frac{n(n + 1)(2n + 1)}{6} + \frac{n(n + 1)}{2} \] Factoring out \( \frac{n(n + 1)}{2} \): \[ S = \frac{n(n + 1)}{2} \left( n + 1 - \frac{(2n + 1)}{3} \right) \] ### Step 7: Simplify the expression To simplify the expression inside the parentheses: \[ n + 1 - \frac{(2n + 1)}{3} = \frac{3(n + 1) - (2n + 1)}{3} = \frac{3n + 3 - 2n - 1}{3} = \frac{n + 2}{3} \] ### Step 8: Final expression for the sum Substituting back, we have: \[ S = \frac{n(n + 1)}{2} \cdot \frac{n + 2}{3} = \frac{n(n + 1)(n + 2)}{6} \] Thus, the sum of the series \( n \cdot 1 + (n - 1) \cdot 2 + (n - 2) \cdot 3 + \ldots + 1 \) is: \[ \boxed{\frac{n(n + 1)(n + 2)}{6}} \]
Promotional Banner

Topper's Solved these Questions

  • PROGRESSIONS

    ML KHANNA|Exercise PROBLEM SET - 5 (MULTIPLE CHOICE QUESTIONS) |92 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise PROBLEM SET - 5 (Assertion/Reason) |1 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise PROBLEM SET - 4 (TRUE AND FALSE) |1 Videos
  • PROBABILITY

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE|6 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Self Assessment Test (Multiple Choise Questions)|34 Videos

Similar Questions

Explore conceptually related problems

Sum of the series S_(n) =(n) (n) + (n-1) (n+1) + (n-2) (n+2) + …+ 1(2n-1) is

Sum of n terms of the series (2n-1)+2(2n-3)+3(2n-5)+... is

Sum of the series sum_(r=1)^(n) (r^(2)+1)r! is

The sum to 100 terms of the series 1.2.3. + 2.3.4. + 3.4.5. + …+ n(n + 1) (n+2) + …. is integral multiple of