Home
Class 12
MATHS
If x, y, z be in A.P., then x + (1)/(yz)...

If x, y, z be in A.P., then `x + (1)/(yz), y + (1)/(zx), z + (1)/(xy)` are in

A

A.P.

B

G.P.

C

H.P.

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to show that if \( x, y, z \) are in arithmetic progression (A.P.), then the expressions \( x + \frac{1}{yz}, y + \frac{1}{zx}, z + \frac{1}{xy} \) are also in A.P. ### Step-by-Step Solution: 1. **Understanding A.P. Condition**: Since \( x, y, z \) are in A.P., we have: \[ y - x = z - y \] This implies: \[ 2y = x + z \quad \text{(1)} \] 2. **Finding the First Difference**: We need to check if the difference between the first two terms is equal to the difference between the last two terms. Let's denote: \[ a_1 = x + \frac{1}{yz}, \quad a_2 = y + \frac{1}{zx} \] We calculate \( a_2 - a_1 \): \[ a_2 - a_1 = \left( y + \frac{1}{zx} \right) - \left( x + \frac{1}{yz} \right) \] Simplifying this gives: \[ a_2 - a_1 = (y - x) + \left( \frac{1}{zx} - \frac{1}{yz} \right) \] The second part can be simplified: \[ \frac{1}{zx} - \frac{1}{yz} = \frac{y - x}{zyx} \] Thus: \[ a_2 - a_1 = (y - x) + \frac{y - x}{zyx} = (y - x) \left( 1 + \frac{1}{zyx} \right) \quad \text{(2)} \] 3. **Finding the Second Difference**: Now, we calculate the difference between the last two terms: \[ a_3 = z + \frac{1}{xy} \] So we calculate \( a_3 - a_2 \): \[ a_3 - a_2 = \left( z + \frac{1}{xy} \right) - \left( y + \frac{1}{zx} \right) \] Simplifying this gives: \[ a_3 - a_2 = (z - y) + \left( \frac{1}{xy} - \frac{1}{zx} \right) \] The second part can be simplified: \[ \frac{1}{xy} - \frac{1}{zx} = \frac{z - y}{xyz} \] Thus: \[ a_3 - a_2 = (z - y) + \frac{z - y}{xyz} = (z - y) \left( 1 + \frac{1}{xyz} \right) \quad \text{(3)} \] 4. **Comparing the Differences**: From equations (2) and (3), we need to check if: \[ (y - x) \left( 1 + \frac{1}{zyx} \right) = (z - y) \left( 1 + \frac{1}{xyz} \right) \] Since \( y - x = z - y \) (from the A.P. condition), we can substitute \( z - y \) with \( y - x \). Thus, both expressions will be equal, confirming that: \[ a_2 - a_1 = a_3 - a_2 \] 5. **Conclusion**: Since the common difference between the first two terms is equal to the common difference between the last two terms, we conclude that: \[ x + \frac{1}{yz}, y + \frac{1}{zx}, z + \frac{1}{xy} \text{ are in A.P.} \]
Promotional Banner

Topper's Solved these Questions

  • PROGRESSIONS

    ML KHANNA|Exercise PROBLEM SET - 5 (Assertion/Reason) |1 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise PROBLEM SET - 5 (TRUE AND FALSE) |5 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise PROBLEM SET - 4 (FILL IN THE BLANKS) |7 Videos
  • PROBABILITY

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE|6 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Self Assessment Test (Multiple Choise Questions)|34 Videos

Similar Questions

Explore conceptually related problems

If x + y + z = 0 , then the value of (x^2)/(yz) + (y^2)/(zx) + (z^2)/(xy) is:

If x,y,z are in A.P. then : yz,zx,xy are in (a) A.P (b) G.P (c) H.P (d) no definite sequence

If (x+y)/(1-xy),y,(y+z)/(1-yz) be in A.P., " then " x,(1)/(y),z will be in

Let x,y,z be complex numbers such that x+y+z=2,x^(2)+y^(2)+z^(2)=3,xyz=4 Then the value of quad 1(1)/(xy+z-1)+(1)/(yz+x-1)+(1)/(zx+y-1) is

If xy + yz + zx = 1 find (x+y)/(1-xy) + (y+z)/(1-yz) + (z + x)/(1-zx) = ?

ML KHANNA-PROGRESSIONS -PROBLEM SET - 5 (MULTIPLE CHOICE QUESTIONS)
  1. If a, b, c, d be four numbers of which the first three are in AP and t...

    Text Solution

    |

  2. If S(k) denotes the sum of first k terms of a G.P. Then, S(n),S(2n)-S(...

    Text Solution

    |

  3. If x, y, z be in A.P., then x + (1)/(yz), y + (1)/(zx), z + (1)/(xy) a...

    Text Solution

    |

  4. Let the positive numebrs a,b,c,d be in A.P. Then abc,abd,acd,bcd re (A...

    Text Solution

    |

  5. (1)/(b-a)+(1)/(b-c)=(1)/(a)+(1)/(c) then a,b,c are in:

    Text Solution

    |

  6. <b>if a,b, c, d and p are distinct real number such that (a^(2) + b^...

    Text Solution

    |

  7. sum(r = 1)^(10) (r)/(1 - 3r^(2) + r^(4))=

    Text Solution

    |

  8. If 21(a^(2) + b^(2) + c^(2)) = (a + 2b + 4c)^(2) then a, b, c are in

    Text Solution

    |

  9. If 4a^(2)+9b^(2)+16c^(2)=2(3ab+6bc+4ca)," where "a,b,c are non-zero nu...

    Text Solution

    |

  10. alpha, beta, gamma are the geometric means between ca, ab, ab, bc, bc,...

    Text Solution

    |

  11. If (a+b x)/(a-b x)=(b+c x)/(b-c x)=(c+dx)/(c-dx)(x!=0) , then show tha...

    Text Solution

    |

  12. If a^(x) = b^(y) = c^(z) and a, b, c are in G.P. then x, y, z are in

    Text Solution

    |

  13. If a^(x) = b^(y) = c^(z) = d^(u) and a, b, c, d are in G.P. then x, y,...

    Text Solution

    |

  14. If for an exponential function y = a^(x) (a gt 0, ne 1) x(1), x(2),…x(...

    Text Solution

    |

  15. If a,b,c, are in A.P., b,c,d are in G.P. and c,d,e, are in H.P., then ...

    Text Solution

    |

  16. If x,1,z are in A.P. and x,2,z are in G.P., then x,4,z are in

    Text Solution

    |

  17. If a,b,c are in A.P., a,x,b are in G.P. and b,y,c are in G.P. then a^(...

    Text Solution

    |

  18. If a,b,c are in H.P., then (a)/(a+c),(b)/(c+a),(c)/(a+b) will be in

    Text Solution

    |

  19. If a1, a2, ,an are in H.P., then (a1)/(a2+a3++an),(a2)/(a1+a3++an), ...

    Text Solution

    |

  20. If xgt1,ygt1,zgt1 are in G.P. then 1/(a+Inx), 1/(1+Iny), 1/(1+Inz) are...

    Text Solution

    |