Home
Class 12
MATHS
In an A.P., T(1) = log a, T(n+1) = log b...

In an A.P., `T_(1) = log a, T_(n+1) = log b, T_(2n + 1) = log c`, then a, b, c are in

A

A.P.

B

G.P.

C

H.P.

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to establish the relationship between the terms in the arithmetic progression (A.P.) and how they relate to the values of \( a \), \( b \), and \( c \). ### Step-by-Step Solution: 1. **Identify the Terms in A.P.:** We are given: - \( T_1 = \log a \) - \( T_{n+1} = \log b \) - \( T_{2n+1} = \log c \) 2. **Using the A.P. Formula:** The general term of an A.P. can be expressed as: \[ T_k = T_1 + (k-1)D \] where \( D \) is the common difference. 3. **Express \( T_{n+1} \):** For \( T_{n+1} \): \[ T_{n+1} = T_1 + nD \] Substituting the values: \[ \log b = \log a + nD \] Rearranging gives: \[ nD = \log b - \log a \] Thus, we can express \( D \) as: \[ D = \frac{\log b - \log a}{n} \] 4. **Express \( T_{2n+1} \):** For \( T_{2n+1} \): \[ T_{2n+1} = T_1 + (2n)D \] Substituting the values: \[ \log c = \log a + 2nD \] Now substituting the expression for \( D \): \[ \log c = \log a + 2n \left(\frac{\log b - \log a}{n}\right) \] Simplifying this gives: \[ \log c = \log a + 2(\log b - \log a) \] \[ \log c = \log a + 2\log b - 2\log a \] \[ \log c = 2\log b - \log a \] 5. **Rearranging the Equation:** Rearranging gives: \[ \log c + \log a = 2\log b \] This can be rewritten using properties of logarithms: \[ \log(ac) = \log(b^2) \] Thus, we have: \[ ac = b^2 \] 6. **Conclusion:** The relationship \( ac = b^2 \) indicates that \( a \), \( b \), and \( c \) are in a geometric progression (G.P.). ### Final Answer: Thus, \( a, b, c \) are in G.P. ---
Promotional Banner

Topper's Solved these Questions

  • PROGRESSIONS

    ML KHANNA|Exercise PROBLEM SET - 5 (Assertion/Reason) |1 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise PROBLEM SET - 5 (TRUE AND FALSE) |5 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise PROBLEM SET - 4 (FILL IN THE BLANKS) |7 Videos
  • PROBABILITY

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE|6 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Self Assessment Test (Multiple Choise Questions)|34 Videos

Similar Questions

Explore conceptually related problems

If in an AP,t_(1)=log_(10)a,t_(n+1)=log_(10)b and t_(2n+1)=log_(10) then a,b,c are in

If log a=(1)/(2)log b=(1)/(5)log c then a^(4)b^(3)c^(-2)=

ML KHANNA-PROGRESSIONS -PROBLEM SET - 5 (MULTIPLE CHOICE QUESTIONS)
  1. If xgt1,ygt1,zgt1 are in G.P. then 1/(a+Inx), 1/(1+Iny), 1/(1+Inz) are...

    Text Solution

    |

  2. If x,y,z are in G.P. (x,y,z gt 1) , then (1)/(2x+log(e)x), (1)/(4x+log...

    Text Solution

    |

  3. In an A.P., T(1) = log a, T(n+1) = log b, T(2n + 1) = log c, then a, b...

    Text Solution

    |

  4. If in a G.P. of 3n terms S(1), S(2), S(3) denote the sum of first n, s...

    Text Solution

    |

  5. If log(x+z)+log(x-2y+z)=2log(x-z)," then "x,y,z are in

    Text Solution

    |

  6. If a, b, c are in H.P., then a^(2) (b - c)^(2), (b^(2))/(4) (c - a)^(2...

    Text Solution

    |

  7. If I(n)=int(0)^(pi)(1-sin2nx)/(1-cos2x)dx then I(1),I(2),I(3),"….." ar...

    Text Solution

    |

  8. If I(n) = int(0)^(pi//2) (sin^(2)nx)/(sin^(2)x)dx then I(1),I(2),I(3),...

    Text Solution

    |

  9. If I(n) = int(0)^(pi//4) tan^(n) x sec^(2)x dx, then I(1), I(2), I(3),...

    Text Solution

    |

  10. Let the roots alpha, beta of the equation ax^(2) + bx + c = 0 satisfy ...

    Text Solution

    |

  11. If a, b, c be in A.P and a^(2), b^(2), c^(2) in H.P., then

    Text Solution

    |

  12. If a, b, c are in H.P. then the value of ((1)/(b) + (1)/(c) - (1)/(a))...

    Text Solution

    |

  13. The next term of the sequence 1,5,14,30,55,... is

    Text Solution

    |

  14. If a ,b ,c are in G.P. and a-b ,c-a ,a n db-c are in H.P., then prove ...

    Text Solution

    |

  15. If a,b, and c are in G.P then a+b,2b and b+ c are in

    Text Solution

    |

  16. The sum of first n terms of the series 1^(2) + 2.2^(2) + 3^(2) + 2.4^(...

    Text Solution

    |

  17. The sum of first n terms of the series 3.1 + 2^(2) + 3.3^(2) + 4^(2)+…...

    Text Solution

    |

  18. 1. If x ,y and z are respectively the p(th), q(th), and r(th) terms, r...

    Text Solution

    |

  19. A.G.P. and H.P. have the same pth, qth and rth terms as a, b, c respec...

    Text Solution

    |

  20. If x ,ya n dz are in A.P., a x ,b y ,a n dc z in G.P. and a ,b ,c in H...

    Text Solution

    |