Home
Class 12
MATHS
If a, b, c are in H.P., then a^(2) (b - ...

If a, b, c are in H.P., then `a^(2) (b - c)^(2), (b^(2))/(4) (c - a)^(2), c^(2) (a-b)^(2)` are in

A

H.P.

B

G.P.

C

A.P.

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine if the expressions \( a^2(b - c)^2 \), \( \frac{b^2}{4}(c - a)^2 \), and \( c^2(a - b)^2 \) are in Arithmetic Progression (A.P.) given that \( a, b, c \) are in Harmonic Progression (H.P.), we can follow these steps: ### Step 1: Understand the relationship between H.P. and A.P. If \( a, b, c \) are in H.P., then their reciprocals \( \frac{1}{a}, \frac{1}{b}, \frac{1}{c} \) are in A.P. This means: \[ 2\frac{1}{b} = \frac{1}{a} + \frac{1}{c} \] or equivalently, \[ \frac{2}{b} = \frac{1}{a} + \frac{1}{c} \] ### Step 2: Express \( b \) in terms of \( a \) and \( c \) From the above relationship, we can express \( b \) in terms of \( a \) and \( c \): \[ b = \frac{2ac}{a + c} \] ### Step 3: Substitute \( b \) into the expressions Now we substitute \( b \) into the expressions \( a^2(b - c)^2 \), \( \frac{b^2}{4}(c - a)^2 \), and \( c^2(a - b)^2 \). 1. **First Expression**: \[ a^2(b - c)^2 = a^2\left(\frac{2ac}{a+c} - c\right)^2 \] Simplifying \( b - c \): \[ b - c = \frac{2ac - c(a+c)}{a+c} = \frac{2ac - ac - c^2}{a+c} = \frac{ac - c^2}{a+c} = \frac{c(a - c)}{a+c} \] Thus, \[ a^2(b - c)^2 = a^2\left(\frac{c(a - c)}{a+c}\right)^2 = \frac{a^2c^2(a - c)^2}{(a+c)^2} \] 2. **Second Expression**: \[ \frac{b^2}{4}(c - a)^2 = \frac{1}{4}\left(\frac{2ac}{a+c}\right)^2(c - a)^2 \] Simplifying \( b^2 \): \[ b^2 = \frac{4a^2c^2}{(a+c)^2} \] Thus, \[ \frac{b^2}{4}(c - a)^2 = \frac{a^2c^2(c - a)^2}{(a+c)^2} \] 3. **Third Expression**: \[ c^2(a - b)^2 = c^2\left(a - \frac{2ac}{a+c}\right)^2 \] Simplifying \( a - b \): \[ a - b = a - \frac{2ac}{a+c} = \frac{a(a+c) - 2ac}{a+c} = \frac{a^2 - ac}{a+c} = \frac{a(a - c)}{a+c} \] Thus, \[ c^2(a - b)^2 = c^2\left(\frac{a(a - c)}{a+c}\right)^2 = \frac{c^2a^2(a - c)^2}{(a+c)^2} \] ### Step 4: Check if the three expressions are in A.P. Now we have: 1. \( A = \frac{a^2c^2(a - c)^2}{(a+c)^2} \) 2. \( B = \frac{a^2c^2(c - a)^2}{(a+c)^2} \) 3. \( C = \frac{c^2a^2(a - c)^2}{(a+c)^2} \) To check if \( A, B, C \) are in A.P., we need to verify: \[ 2B = A + C \] Substituting the values: \[ 2 \cdot \frac{a^2c^2(c - a)^2}{(a+c)^2} = \frac{a^2c^2(a - c)^2}{(a+c)^2} + \frac{c^2a^2(a - c)^2}{(a+c)^2} \] This simplifies to: \[ \frac{2a^2c^2(c - a)^2}{(a+c)^2} = \frac{(a^2 + c^2)a^2c^2(a - c)^2}{(a+c)^2} \] This confirms that the three expressions are indeed equal, thus they are in A.P. ### Conclusion The three expressions \( a^2(b - c)^2 \), \( \frac{b^2}{4}(c - a)^2 \), and \( c^2(a - b)^2 \) are in Arithmetic Progression. ---
Promotional Banner

Topper's Solved these Questions

  • PROGRESSIONS

    ML KHANNA|Exercise PROBLEM SET - 5 (Assertion/Reason) |1 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise PROBLEM SET - 5 (TRUE AND FALSE) |5 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise PROBLEM SET - 4 (FILL IN THE BLANKS) |7 Videos
  • PROBABILITY

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE|6 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Self Assessment Test (Multiple Choise Questions)|34 Videos

Similar Questions

Explore conceptually related problems

If a,b,c are in H.P., then (c^(2)(b-a)^(2)+a^(2)(c-b)^(2))/(b^(2)(a-c)^(2)) =

If a,b, c are in H.P. then a-(b)/(2),(b)/(2),c-(b)/(2) are in

If a,b,c are in H.P. then a-(b)/(2),(b)/(2),c-(b)/(2) are in

If a,b,c,d are in G.P.then (a^(2)-b^(2)),(b^(2)-c^(2)),(c^(2)-d^(2)) are in

If a, b, c are in H.P., then the equation a(b-c) x^(2) + b(c-a)x+c(a-b)=0

If a, b, c, d are in G.P., then prove that: (b-c)^(2)+(c-a)^(2)+(d-b)^(2)=(a-d)^(2)

ML KHANNA-PROGRESSIONS -PROBLEM SET - 5 (MULTIPLE CHOICE QUESTIONS)
  1. If in a G.P. of 3n terms S(1), S(2), S(3) denote the sum of first n, s...

    Text Solution

    |

  2. If log(x+z)+log(x-2y+z)=2log(x-z)," then "x,y,z are in

    Text Solution

    |

  3. If a, b, c are in H.P., then a^(2) (b - c)^(2), (b^(2))/(4) (c - a)^(2...

    Text Solution

    |

  4. If I(n)=int(0)^(pi)(1-sin2nx)/(1-cos2x)dx then I(1),I(2),I(3),"….." ar...

    Text Solution

    |

  5. If I(n) = int(0)^(pi//2) (sin^(2)nx)/(sin^(2)x)dx then I(1),I(2),I(3),...

    Text Solution

    |

  6. If I(n) = int(0)^(pi//4) tan^(n) x sec^(2)x dx, then I(1), I(2), I(3),...

    Text Solution

    |

  7. Let the roots alpha, beta of the equation ax^(2) + bx + c = 0 satisfy ...

    Text Solution

    |

  8. If a, b, c be in A.P and a^(2), b^(2), c^(2) in H.P., then

    Text Solution

    |

  9. If a, b, c are in H.P. then the value of ((1)/(b) + (1)/(c) - (1)/(a))...

    Text Solution

    |

  10. The next term of the sequence 1,5,14,30,55,... is

    Text Solution

    |

  11. If a ,b ,c are in G.P. and a-b ,c-a ,a n db-c are in H.P., then prove ...

    Text Solution

    |

  12. If a,b, and c are in G.P then a+b,2b and b+ c are in

    Text Solution

    |

  13. The sum of first n terms of the series 1^(2) + 2.2^(2) + 3^(2) + 2.4^(...

    Text Solution

    |

  14. The sum of first n terms of the series 3.1 + 2^(2) + 3.3^(2) + 4^(2)+…...

    Text Solution

    |

  15. 1. If x ,y and z are respectively the p(th), q(th), and r(th) terms, r...

    Text Solution

    |

  16. A.G.P. and H.P. have the same pth, qth and rth terms as a, b, c respec...

    Text Solution

    |

  17. If x ,ya n dz are in A.P., a x ,b y ,a n dc z in G.P. and a ,b ,c in H...

    Text Solution

    |

  18. Suppose a, b, c are in A.P. and a^(2), b^(2), c^(2) are in G.P. If a l...

    Text Solution

    |

  19. If x, y, z are in A.P. then xth, yth and zth terms of any G.P. are in

    Text Solution

    |

  20. If T(p), T(q), T(r) of an A.P. (G.P. or H.P.) are in A.P. (G.P. or H.P...

    Text Solution

    |