Home
Class 12
MATHS
If I(n) = int(0)^(pi//2) (sin^(2)nx)/(si...

If `I_(n) = int_(0)^(pi//2) (sin^(2)nx)/(sin^(2)x)dx` then `I_(1),I_(2),I_(3),...` are in

A

A.P.

B

G.P.

C

H.P.

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the integral \( I_n = \int_0^{\frac{\pi}{2}} \frac{\sin^2(nx)}{\sin^2(x)} \, dx \) and show that \( I_1, I_2, I_3, \ldots \) are in arithmetic progression (AP). ### Step-by-Step Solution: 1. **Define the Integral**: We start with the integral: \[ I_n = \int_0^{\frac{\pi}{2}} \frac{\sin^2(nx)}{\sin^2(x)} \, dx \] 2. **Express the Difference**: We compute the difference between consecutive terms: \[ I_n - I_{n-1} = \int_0^{\frac{\pi}{2}} \left( \frac{\sin^2(nx)}{\sin^2(x)} - \frac{\sin^2((n-1)x)}{\sin^2(x)} \right) \, dx \] This simplifies to: \[ I_n - I_{n-1} = \int_0^{\frac{\pi}{2}} \frac{\sin^2(nx) - \sin^2((n-1)x)}{\sin^2(x)} \, dx \] 3. **Use the Identity for Sine**: We can use the identity \( \sin^2 A - \sin^2 B = (\sin A - \sin B)(\sin A + \sin B) \): \[ \sin^2(nx) - \sin^2((n-1)x) = (\sin(nx) - \sin((n-1)x))(\sin(nx) + \sin((n-1)x)) \] 4. **Simplify the Integral**: The integral can be expressed using the sine difference: \[ I_n - I_{n-1} = \int_0^{\frac{\pi}{2}} \frac{\sin(nx) - \sin((n-1)x)}{\sin(x)} \cdot (\sin(nx) + \sin((n-1)x)) \, dx \] 5. **Evaluate the Integral**: The integral \( \int_0^{\frac{\pi}{2}} \frac{\sin(nx) - \sin((n-1)x)}{\sin(x)} \, dx \) can be evaluated using known results, leading to: \[ I_n - I_{n-1} = \frac{\pi}{2} \] 6. **Conclude the Arithmetic Progression**: Since \( I_n - I_{n-1} = \frac{\pi}{2} \), we can conclude that: \[ I_2 - I_1 = I_3 - I_2 = I_4 - I_3 = \ldots = \frac{\pi}{2} \] This means that \( I_1, I_2, I_3, \ldots \) are in arithmetic progression. ### Final Answer: Thus, \( I_1, I_2, I_3, \ldots \) are in arithmetic progression. ---
Promotional Banner

Topper's Solved these Questions

  • PROGRESSIONS

    ML KHANNA|Exercise PROBLEM SET - 5 (Assertion/Reason) |1 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise PROBLEM SET - 5 (TRUE AND FALSE) |5 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise PROBLEM SET - 4 (FILL IN THE BLANKS) |7 Videos
  • PROBABILITY

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE|6 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Self Assessment Test (Multiple Choise Questions)|34 Videos

Similar Questions

Explore conceptually related problems

If I_(n)=int_(0)^(pi)(1-sin2nx)/(1-cos2x)dx then I_(1),I_(2),I_(3),"….." are in

If rArrI_(n)= int_(a)^(a+pi//2)(cos^(2)nx)/(sinx) dx, "then" I_(2)-I_(1),I_(3)-I_(2),I_(4)-I_(3) are in

If a _(n) = int_(0) ^( (pi)/(2)) (sin^(2) nx)/( sin x) dx then a _(2) -a _(1) , a _(3) - a_(2) , a_(4) -a _(3),....... are in

I=int_(0)^(2 pi)e^(sin^(2)x+sin x+1)dx then

If I_(n)=int_(0)^(pi//2) x^(n) sin x dx , then I_(4)+12I_(2) is equal to\

For any n in N, int_(0)^(pi) (sin^(2)nx)/(sin^(2)x)dx is equal to

Let I=int_(0)^((pi)/(2))((sin x)/(x))dx, then

ML KHANNA-PROGRESSIONS -PROBLEM SET - 5 (MULTIPLE CHOICE QUESTIONS)
  1. If a, b, c are in H.P., then a^(2) (b - c)^(2), (b^(2))/(4) (c - a)^(2...

    Text Solution

    |

  2. If I(n)=int(0)^(pi)(1-sin2nx)/(1-cos2x)dx then I(1),I(2),I(3),"….." ar...

    Text Solution

    |

  3. If I(n) = int(0)^(pi//2) (sin^(2)nx)/(sin^(2)x)dx then I(1),I(2),I(3),...

    Text Solution

    |

  4. If I(n) = int(0)^(pi//4) tan^(n) x sec^(2)x dx, then I(1), I(2), I(3),...

    Text Solution

    |

  5. Let the roots alpha, beta of the equation ax^(2) + bx + c = 0 satisfy ...

    Text Solution

    |

  6. If a, b, c be in A.P and a^(2), b^(2), c^(2) in H.P., then

    Text Solution

    |

  7. If a, b, c are in H.P. then the value of ((1)/(b) + (1)/(c) - (1)/(a))...

    Text Solution

    |

  8. The next term of the sequence 1,5,14,30,55,... is

    Text Solution

    |

  9. If a ,b ,c are in G.P. and a-b ,c-a ,a n db-c are in H.P., then prove ...

    Text Solution

    |

  10. If a,b, and c are in G.P then a+b,2b and b+ c are in

    Text Solution

    |

  11. The sum of first n terms of the series 1^(2) + 2.2^(2) + 3^(2) + 2.4^(...

    Text Solution

    |

  12. The sum of first n terms of the series 3.1 + 2^(2) + 3.3^(2) + 4^(2)+…...

    Text Solution

    |

  13. 1. If x ,y and z are respectively the p(th), q(th), and r(th) terms, r...

    Text Solution

    |

  14. A.G.P. and H.P. have the same pth, qth and rth terms as a, b, c respec...

    Text Solution

    |

  15. If x ,ya n dz are in A.P., a x ,b y ,a n dc z in G.P. and a ,b ,c in H...

    Text Solution

    |

  16. Suppose a, b, c are in A.P. and a^(2), b^(2), c^(2) are in G.P. If a l...

    Text Solution

    |

  17. If x, y, z are in A.P. then xth, yth and zth terms of any G.P. are in

    Text Solution

    |

  18. If T(p), T(q), T(r) of an A.P. (G.P. or H.P.) are in A.P. (G.P. or H.P...

    Text Solution

    |

  19. If x, y, z, w in N be four consecutive terms of an A.P., then T(x), T(...

    Text Solution

    |

  20. If in any progressin the difference of any two consecutive terms bears...

    Text Solution

    |