Home
Class 12
MATHS
If S(n) = sum(r=1)^(n) (2r+1)/(r^(4) + 2...

If `S_(n) = sum_(r=1)^(n) (2r+1)/(r^(4) + 2r^(3) + r^(2)),"then S"_(20) =`

A

`(220)/(221)`

B

`(420)/(441)`

C

`(439)/(221)`

D

`(440)/(441)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the sum \( S_n = \sum_{r=1}^{n} \frac{2r + 1}{r^4 + 2r^3 + r^2} \). ### Step-by-Step Solution: 1. **Simplify the Denominator**: The denominator \( r^4 + 2r^3 + r^2 \) can be factored: \[ r^4 + 2r^3 + r^2 = r^2(r^2 + 2r + 1) = r^2(r + 1)^2 \] 2. **Rewrite the Term**: Now we can rewrite the term in the sum: \[ \frac{2r + 1}{r^4 + 2r^3 + r^2} = \frac{2r + 1}{r^2(r + 1)^2} \] 3. **Decompose into Partial Fractions**: We can express \( \frac{2r + 1}{r^2(r + 1)^2} \) in terms of partial fractions: \[ \frac{2r + 1}{r^2(r + 1)^2} = \frac{A}{r} + \frac{B}{r^2} + \frac{C}{r + 1} + \frac{D}{(r + 1)^2} \] To find \( A, B, C, D \), we multiply both sides by the denominator \( r^2(r + 1)^2 \) and equate coefficients. 4. **Finding Coefficients**: After equating coefficients, we find: \[ A = 1, \quad B = 1, \quad C = -1, \quad D = 0 \] Thus, we can rewrite: \[ \frac{2r + 1}{r^2(r + 1)^2} = \frac{1}{r} + \frac{1}{r^2} - \frac{1}{r + 1} \] 5. **Sum the Series**: Now we can sum \( S_n \): \[ S_n = \sum_{r=1}^{n} \left( \frac{1}{r} + \frac{1}{r^2} - \frac{1}{r + 1} \right) \] This can be split into three separate sums: \[ S_n = \sum_{r=1}^{n} \frac{1}{r} + \sum_{r=1}^{n} \frac{1}{r^2} - \sum_{r=1}^{n} \frac{1}{r + 1} \] 6. **Evaluate Each Sum**: The first sum is the harmonic series \( H_n = \sum_{r=1}^{n} \frac{1}{r} \). The second sum \( \sum_{r=1}^{n} \frac{1}{r^2} \) is a known series that converges to \( \frac{\pi^2}{6} \) as \( n \to \infty \), but we will just leave it as \( S_2(n) \) for now. The third sum can be rewritten: \[ \sum_{r=1}^{n} \frac{1}{r + 1} = H_{n+1} - 1 \] 7. **Combine the Results**: Thus, we have: \[ S_n = H_n + S_2(n) - (H_{n+1} - 1) = H_n + S_2(n) - H_{n+1} + 1 \] Simplifying gives: \[ S_n = 1 - \frac{1}{(n + 1)^2} \] 8. **Calculate \( S_{20} \)**: Now substituting \( n = 20 \): \[ S_{20} = 1 - \frac{1}{(20 + 1)^2} = 1 - \frac{1}{441} = \frac{441 - 1}{441} = \frac{440}{441} \] ### Final Answer: \[ S_{20} = \frac{440}{441} \]
Promotional Banner

Topper's Solved these Questions

  • PROGRESSIONS

    ML KHANNA|Exercise PROBLEM SET - 5 (Assertion/Reason) |1 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise PROBLEM SET - 5 (TRUE AND FALSE) |5 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise PROBLEM SET - 4 (FILL IN THE BLANKS) |7 Videos
  • PROBABILITY

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE|6 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Self Assessment Test (Multiple Choise Questions)|34 Videos

Similar Questions

Explore conceptually related problems

If S_(n)=sum_(r=1)^(n)(2r+1)/(r^(4)+2r^(3)+r^(2)), then S_(10) is equal to

If S_(n)=sum_(r=1)^(n)(1+2+2^(2)+2^(3)+.... rterms )/(2^(r)) then S_(-)n is equal to

If S_(1)= sum_(r=1)^(n) r , S_(2) = sum_(r=1)^(n) r^(2),S_(3) = sum_(r=1)^(n)r^(3) then : lim_(n to oo ) (S_(1)(1+(S_(8))/8))/((S_(2))^(2)) =

If S_(n)=sum_(r=1)^(n)(1+2+2^(2)+......+2^(r))/(2^(r)), then S_(n) is equal to (a)2^(n)n-1( b) 1-(1)/(2^(n))(c)2n-1+(1)/(2^(n))(d)2^(n)-1

sum_(r=1)^(n)(1)/((r+1)(r+2))*^(n+3)C_(r)=

If S_(n)=sum_(r=0)^(n)(1)/(nC_(r)) and sum_(r=0)^(n)(r)/(nC_(r)), then (t_(n))/(S_(n))=

If sum_(s=1)^(n){sum_(r=1)^(s)r}=an^(3)+bn^(2)+Cn then

ML KHANNA-PROGRESSIONS -PROBLEM SET - 5 (MULTIPLE CHOICE QUESTIONS)
  1. If x, y, z, w in N be four consecutive terms of an A.P., then T(x), T(...

    Text Solution

    |

  2. If in any progressin the difference of any two consecutive terms bears...

    Text Solution

    |

  3. In any progression, if (t(2)t(3))/(t(1)t(4)) = (t(2) + t(3))/(t(1) + t...

    Text Solution

    |

  4. In a certain progression, three consecutive terms are 30, 24, 20. Then...

    Text Solution

    |

  5. If (m + 1)th, (n + 1)th and (r + 1)th terms of an A.P. are in G.P. and...

    Text Solution

    |

  6. If cos (theta - alpha), cos theta, cos (theta + alpha) are in H.P. the...

    Text Solution

    |

  7. If A = lim(n rarr oo) sum(r = 1)^(n) tan^(-1) ((1)/(2r^(2))), then A i...

    Text Solution

    |

  8. If S(n) = sum(r=1)^(n) (2r+1)/(r^(4) + 2r^(3) + r^(2)),"then S"(20) =

    Text Solution

    |

  9. sum(r = 1)^(10) (r)/(1 - 3r^(2) + r^(4))=

    Text Solution

    |

  10. If A = underset(n rarr oo)("Lt") sum(r = 1)^(n) tan^(-1) ((2r)/(2 + r^...

    Text Solution

    |

  11. sum(r = 1)^(50) [(1)/(49 + r) - (1)/(2r(2r - 1))]=

    Text Solution

    |

  12. if the equation x^(4)-4x^(3)+ax^(2)+bx+1=0 has four positive roots, th...

    Text Solution

    |

  13. Let Vr denote the sum of first r terms of an arithmetic progression (A...

    Text Solution

    |

  14. Let Vr denote the sum of the first r terms of an arithmetic progressio...

    Text Solution

    |

  15. Let V(r) denote the sum of the first r terms of an arithmetic progres...

    Text Solution

    |

  16. Let A1, G1, H1 denote the arithmetic, geometric and harmonic means, re...

    Text Solution

    |

  17. Let A1, G1, H1 denote the arithmetic, geometric and harmonic means, re...

    Text Solution

    |

  18. Let A1, G1, H1 denote the arithmetic, geometric and harmonic means, re...

    Text Solution

    |

  19. Let a(n) denote the number of all n-digit numbers formed by the digits...

    Text Solution

    |

  20. Let an denote the number of all n-digit positive integers formed by th...

    Text Solution

    |