Home
Class 12
MATHS
If |vecalpha + vecbeta| = |vecalpha - ve...

If `|vecalpha + vecbeta| = |vecalpha - vecbeta|`, then

A

`alpha` is parallel to `vecbeta`

B

`alpha` is perpendicular to `vecbeta`

C

`|vecalpha| = |vecbeta|`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( |\vec{\alpha} + \vec{\beta}| = |\vec{\alpha} - \vec{\beta}| \), we can follow these steps: ### Step 1: Square both sides of the equation We start with the equation: \[ |\vec{\alpha} + \vec{\beta}| = |\vec{\alpha} - \vec{\beta}| \] Squaring both sides, we have: \[ |\vec{\alpha} + \vec{\beta}|^2 = |\vec{\alpha} - \vec{\beta}|^2 \] ### Step 2: Expand both sides Using the property of magnitudes, we expand both sides: \[ |\vec{\alpha}|^2 + |\vec{\beta}|^2 + 2|\vec{\alpha}||\vec{\beta}|\cos\theta = |\vec{\alpha}|^2 + |\vec{\beta}|^2 - 2|\vec{\alpha}||\vec{\beta}|\cos\theta \] where \(\theta\) is the angle between vectors \(\vec{\alpha}\) and \(\vec{\beta}\). ### Step 3: Simplify the equation Now, we can simplify the equation by cancelling out common terms: \[ |\vec{\alpha}|^2 + |\vec{\beta}|^2 + 2|\vec{\alpha}||\vec{\beta}|\cos\theta = |\vec{\alpha}|^2 + |\vec{\beta}|^2 - 2|\vec{\alpha}||\vec{\beta}|\cos\theta \] This leads to: \[ 2|\vec{\alpha}||\vec{\beta}|\cos\theta + 2|\vec{\alpha}||\vec{\beta}|\cos\theta = 0 \] or \[ 4|\vec{\alpha}||\vec{\beta}|\cos\theta = 0 \] ### Step 4: Solve for \(\cos\theta\) From the equation \(4|\vec{\alpha}||\vec{\beta}|\cos\theta = 0\), we can conclude: \[ \cos\theta = 0 \] This implies that: \[ \theta = 90^\circ \] ### Conclusion Thus, the angle between the vectors \(\vec{\alpha}\) and \(\vec{\beta}\) is \(90^\circ\), meaning they are perpendicular to each other. ---
Promotional Banner

Topper's Solved these Questions

  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Self Assessment Test (Assertion/Reason )|1 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Self Assessment Test (Comprehension)|3 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (4) (MULTIPLE CHOICE QUESTIONS) |8 Videos
  • AREA OF CURVES

    ML KHANNA|Exercise SELF ASSESSEMENT TEST|16 Videos

Similar Questions

Explore conceptually related problems

If vecalpha||(vecbxxvecgamma), then (vecalphaxxvecbeta).(vecalphaxxvecgamma)= (A) |vecalpha|^2(vecbeta.vecgamma) (B) |vecbeta|^2(vecgamma.vecalpha) (C) |vecgamma|^2(vecalpha.vecbeta) (D) |vecalpha||vecbeta||vecgamma|

If vecalpha+ vecbeta+ vecgamma=a vecdeltaa n d vecbeta+ vecgamma+ vecdelta=b vecalpha, vecalphaa n d vecdelta are non-colliner, then vecalpha+ vecbeta+ vecgamma+ vecdelta equals a. a vecalpha b. b vecdelta c. 0 d. (a+b) vecgamma

A parallelogram is constructed on the vectors veca=3vecalpha-vecbeta, vecb=vecalpha+3vecbeta . If |vecalpha|=|vecbeta|=2 and angle between vecalpha and vecbeta is pi/3 then the length of a diagonal of the parallelogram is (A) 4sqrt(5) (B) 4sqrt(3) (C) 4sqrt(7) (D) none of these

vecalpha and vecbeta are two unit vectos and vecr is a vector such that vecr,vecalpha=0 and sqrt(2)(vecrxxvecbeta)=3(vecrxxvecalpha)-vecbeta , then (1)/(|vecr|^(2)) equal

If veca=3hati+4hatj+5hatk and vecbeta =2hati+hatj-4hatk , then express vecbeta=vecbeta_1+vecbeta_2 such that vecbeta_1||vecalpha and vecbeta_2botvecalpha .

Let vecalpha = 3hati + hatj and beta= 2hati - hatj + 3hatk . If vecbeta = vecbeta_(1) - vecbeta_(2) , where vecbeta_(1) is parallel to vecalpha and vecbeta_(2) is perpendicular to vecalpha , then vecbeta_(1) xx vecbeta_(2) is equal to:

If vecalpha is a constant vectro and vecgamma is the position vector of a variable point (x,y,z), show that (vecgamma-vecalpha) vecalpha =0 is the equation of a plane through fixed point vec(alpha)

ML KHANNA-ADDITION AND MULTIPLICATION OF VECTORS -Self Assessment Test (MULTIPLE CHOICE QUESTIONS)
  1. The number of vectors of unit length perpendicular to vectors vec ...

    Text Solution

    |

  2. A vector a has components 2p and 1 with respect to a rectangular cart...

    Text Solution

    |

  3. If |vecalpha + vecbeta| = |vecalpha - vecbeta|, then

    Text Solution

    |

  4. If veca and vecb are two vectors such that veca.vecb = 0 and veca xx v...

    Text Solution

    |

  5. Let veca, vecb, vecc be three non-coplanar vectors and vecp,vecq,vecr ...

    Text Solution

    |

  6. The components of a vector veca along and perpendicular to a non-zero ...

    Text Solution

    |

  7. For any three vectors a, b, c (a-b).{(b-c) xx (c-a)} = 2a.(bxxc). ...

    Text Solution

    |

  8. If a = 4i + 6j and b = 3j+4k, then the vector form of component of a a...

    Text Solution

    |

  9. A unit vector perpendicular to the vector 4i-j+3k and -2i+j-2k is

    Text Solution

    |

  10. The unit vector perpendicular to the two vectors i-j and i+2j, and per...

    Text Solution

    |

  11. If u = i xx (a xx i), + j xx (a xx j) + k xx(a xx k), then

    Text Solution

    |

  12. The volume of a parallelopiped whose sides are given by vecOA =2i-3j,v...

    Text Solution

    |

  13. If alpha = 2i + 3j - k, beta = -i + 2j-4k, gamma = i+j+k then the valu...

    Text Solution

    |

  14. Let vec a=2 hat i- hat j+ hat k , vec b= hat i+2 hat j= hat ka n d ve...

    Text Solution

    |

  15. If the vectors vec c , vec a=x hat i+y hat j+z hat ka n d vec b= hat ...

    Text Solution

    |

  16. If veca lies in the plane of vectors vecb and vecc, then which of the ...

    Text Solution

    |

  17. If a xx b = c, b xx c = a and a, b,c be moduli of the vectors a, b,c...

    Text Solution

    |

  18. Let a-i+j and b=2i-k.The point of intersection of the lines r times a=...

    Text Solution

    |

  19. Let a,b, c be three non-coplanar vectors and r be any vector in space ...

    Text Solution

    |

  20. Let a, b, c be unit vectors such that a + b + c = 0 which one of the f...

    Text Solution

    |