Home
Class 12
MATHS
For any three vectors a, b, c (a-b).{...

For any three vectors a, b, c
`(a-b).{(b-c) xx (c-a)} = 2a.(bxxc)`.
(a) True
(b) False.

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the statement \((\mathbf{a} - \mathbf{b}) \cdot ((\mathbf{b} - \mathbf{c}) \times (\mathbf{c} - \mathbf{a})) = 2\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})\) is true or false, we will analyze both sides of the equation step by step. ### Step 1: Expand the left-hand side We start with the left-hand side of the equation: \[ (\mathbf{a} - \mathbf{b}) \cdot ((\mathbf{b} - \mathbf{c}) \times (\mathbf{c} - \mathbf{a})) \] Let \(\mathbf{u} = \mathbf{b} - \mathbf{c}\) and \(\mathbf{v} = \mathbf{c} - \mathbf{a}\). Then, we can rewrite the left-hand side as: \[ (\mathbf{a} - \mathbf{b}) \cdot (\mathbf{u} \times \mathbf{v}) \] ### Step 2: Calculate the cross product Next, we need to compute the cross product \(\mathbf{u} \times \mathbf{v}\): \[ \mathbf{u} \times \mathbf{v} = (\mathbf{b} - \mathbf{c}) \times (\mathbf{c} - \mathbf{a}) \] Using the distributive property of the cross product: \[ \mathbf{u} \times \mathbf{v} = \mathbf{b} \times \mathbf{c} - \mathbf{b} \times \mathbf{a} - \mathbf{c} \times \mathbf{c} + \mathbf{c} \times \mathbf{a} \] Since \(\mathbf{c} \times \mathbf{c} = \mathbf{0}\), we have: \[ \mathbf{u} \times \mathbf{v} = \mathbf{b} \times \mathbf{c} - \mathbf{b} \times \mathbf{a} + \mathbf{c} \times \mathbf{a} \] ### Step 3: Substitute back into the dot product Now substituting back into the dot product: \[ (\mathbf{a} - \mathbf{b}) \cdot (\mathbf{b} \times \mathbf{c} - \mathbf{b} \times \mathbf{a} + \mathbf{c} \times \mathbf{a}) \] This expands to: \[ (\mathbf{a} - \mathbf{b}) \cdot (\mathbf{b} \times \mathbf{c}) - (\mathbf{a} - \mathbf{b}) \cdot (\mathbf{b} \times \mathbf{a}) + (\mathbf{a} - \mathbf{b}) \cdot (\mathbf{c} \times \mathbf{a}) \] ### Step 4: Analyze each term 1. The first term \((\mathbf{a} - \mathbf{b}) \cdot (\mathbf{b} \times \mathbf{c})\) remains as is. 2. The second term \((\mathbf{a} - \mathbf{b}) \cdot (\mathbf{b} \times \mathbf{a})\) is zero because \(\mathbf{b} \times \mathbf{a}\) is perpendicular to \((\mathbf{a} - \mathbf{b})\). 3. The third term \((\mathbf{a} - \mathbf{b}) \cdot (\mathbf{c} \times \mathbf{a})\) also evaluates to zero because \(\mathbf{c} \times \mathbf{a}\) is perpendicular to \((\mathbf{a} - \mathbf{b})\). Thus, we simplify the left-hand side to: \[ (\mathbf{a} - \mathbf{b}) \cdot (\mathbf{b} \times \mathbf{c}) \] ### Step 5: Compare with the right-hand side Now we need to compare this with the right-hand side: \[ 2\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) \] The left-hand side simplifies to: \[ \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) - \mathbf{b} \cdot (\mathbf{b} \times \mathbf{c}) = \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) \] Since \(\mathbf{b} \cdot (\mathbf{b} \times \mathbf{c}) = 0\). ### Conclusion Thus, we have: \[ \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) \neq 2\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) \] Hence, the statement is **False**.
Promotional Banner

Topper's Solved these Questions

  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Self Assessment Test (Assertion/Reason )|1 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Self Assessment Test (Comprehension)|3 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (4) (MULTIPLE CHOICE QUESTIONS) |8 Videos
  • AREA OF CURVES

    ML KHANNA|Exercise SELF ASSESSEMENT TEST|16 Videos

Similar Questions

Explore conceptually related problems

For any three vectors a,b,c the value of a xx(b xx c)+b xx(c xx a)+c xx(a xx b) is

For any three unequal numbers a,b and c (a-b)/(b-c) equals to

For any non zero vector, a,b,c a*[(b+c)xx(a+b+c)]= . . . .

For any three vectors vec a, vec b, vec c, (vec a-vec b) * (vec b-vec c) xx (vec c-vec a) is equal to

For any three sets A, B and C, prove that: (A -B) xx C= (A xx C) - (B xx C)

For any three vectors a b,c,show that vec a xx(vec b+vec c)+vec b xx(vec c+vec a)+vec c xx(vec a+vec b)=0

For any three vectors vec a, vec b & vec c prove that (vec b xxvec c) xx (vec c xxvec a) = [vec with bvec c] vec c

ML KHANNA-ADDITION AND MULTIPLICATION OF VECTORS -Self Assessment Test (MULTIPLE CHOICE QUESTIONS)
  1. Let veca, vecb, vecc be three non-coplanar vectors and vecp,vecq,vecr ...

    Text Solution

    |

  2. The components of a vector veca along and perpendicular to a non-zero ...

    Text Solution

    |

  3. For any three vectors a, b, c (a-b).{(b-c) xx (c-a)} = 2a.(bxxc). ...

    Text Solution

    |

  4. If a = 4i + 6j and b = 3j+4k, then the vector form of component of a a...

    Text Solution

    |

  5. A unit vector perpendicular to the vector 4i-j+3k and -2i+j-2k is

    Text Solution

    |

  6. The unit vector perpendicular to the two vectors i-j and i+2j, and per...

    Text Solution

    |

  7. If u = i xx (a xx i), + j xx (a xx j) + k xx(a xx k), then

    Text Solution

    |

  8. The volume of a parallelopiped whose sides are given by vecOA =2i-3j,v...

    Text Solution

    |

  9. If alpha = 2i + 3j - k, beta = -i + 2j-4k, gamma = i+j+k then the valu...

    Text Solution

    |

  10. Let vec a=2 hat i- hat j+ hat k , vec b= hat i+2 hat j= hat ka n d ve...

    Text Solution

    |

  11. If the vectors vec c , vec a=x hat i+y hat j+z hat ka n d vec b= hat ...

    Text Solution

    |

  12. If veca lies in the plane of vectors vecb and vecc, then which of the ...

    Text Solution

    |

  13. If a xx b = c, b xx c = a and a, b,c be moduli of the vectors a, b,c...

    Text Solution

    |

  14. Let a-i+j and b=2i-k.The point of intersection of the lines r times a=...

    Text Solution

    |

  15. Let a,b, c be three non-coplanar vectors and r be any vector in space ...

    Text Solution

    |

  16. Let a, b, c be unit vectors such that a + b + c = 0 which one of the f...

    Text Solution

    |

  17. Unit vector vecc is inclined at an angle theta to unit vectors ve...

    Text Solution

    |

  18. If hata,hatb,hatc and hatd are unit vectors such that (hata xx hatb). ...

    Text Solution

    |

  19. If vecu, vecv, vecw are non -coplanar vectors and p,q, are real numbe...

    Text Solution

    |

  20. Let ABCD be a parallelogram such that vec A B= vec q , vec A D= vec p...

    Text Solution

    |