Home
Class 12
MATHS
A unit vector perpendicular to the vecto...

A unit vector perpendicular to the vector
`4i-j+3k and -2i+j-2k` is

A

`(1)/(3) (i-2j+2k)`

B

`(1)/(3) (-i+2j+2k)`

C

`(1)/(3) (2i+j+2k)`

D

`(1)/(3) (2i-2j+2k)`

Text Solution

AI Generated Solution

The correct Answer is:
To find a unit vector that is perpendicular to the vectors \( \mathbf{A} = 4\mathbf{i} - \mathbf{j} + 3\mathbf{k} \) and \( \mathbf{B} = -2\mathbf{i} + \mathbf{j} - 2\mathbf{k} \), we can use the cross product of the two vectors. The cross product will yield a vector that is perpendicular to both. ### Step-by-step Solution: 1. **Identify the vectors**: \[ \mathbf{A} = 4\mathbf{i} - \mathbf{j} + 3\mathbf{k} \] \[ \mathbf{B} = -2\mathbf{i} + \mathbf{j} - 2\mathbf{k} \] 2. **Calculate the cross product \( \mathbf{A} \times \mathbf{B} \)**: The cross product can be calculated using the determinant of a matrix formed by the unit vectors and the components of the vectors: \[ \mathbf{A} \times \mathbf{B} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 4 & -1 & 3 \\ -2 & 1 & -2 \end{vmatrix} \] 3. **Calculate the determinant**: Expanding the determinant: \[ = \mathbf{i} \begin{vmatrix} -1 & 3 \\ 1 & -2 \end{vmatrix} - \mathbf{j} \begin{vmatrix} 4 & 3 \\ -2 & -2 \end{vmatrix} + \mathbf{k} \begin{vmatrix} 4 & -1 \\ -2 & 1 \end{vmatrix} \] - For \( \mathbf{i} \): \[ = \mathbf{i}((-1)(-2) - (3)(1)) = \mathbf{i}(2 - 3) = -\mathbf{i} \] - For \( \mathbf{j} \): \[ = -\mathbf{j}((4)(-2) - (3)(-2)) = -\mathbf{j}(-8 + 6) = -\mathbf{j}(-2) = 2\mathbf{j} \] - For \( \mathbf{k} \): \[ = \mathbf{k}((4)(1) - (-1)(-2)) = \mathbf{k}(4 - 2) = 2\mathbf{k} \] Combining these results, we have: \[ \mathbf{A} \times \mathbf{B} = -\mathbf{i} + 2\mathbf{j} + 2\mathbf{k} \] 4. **Resulting vector**: \[ \mathbf{C} = -\mathbf{i} + 2\mathbf{j} + 2\mathbf{k} \] 5. **Calculate the magnitude of \( \mathbf{C} \)**: \[ |\mathbf{C}| = \sqrt{(-1)^2 + (2)^2 + (2)^2} = \sqrt{1 + 4 + 4} = \sqrt{9} = 3 \] 6. **Find the unit vector**: The unit vector \( \mathbf{U} \) in the direction of \( \mathbf{C} \) is given by: \[ \mathbf{U} = \frac{\mathbf{C}}{|\mathbf{C}|} = \frac{-\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}}{3} \] Thus, the unit vector is: \[ \mathbf{U} = -\frac{1}{3}\mathbf{i} + \frac{2}{3}\mathbf{j} + \frac{2}{3}\mathbf{k} \] ### Final Answer: The unit vector perpendicular to the given vectors is: \[ \mathbf{U} = -\frac{1}{3}\mathbf{i} + \frac{2}{3}\mathbf{j} + \frac{2}{3}\mathbf{k} \]
Promotional Banner

Topper's Solved these Questions

  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Self Assessment Test (Assertion/Reason )|1 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Self Assessment Test (Comprehension)|3 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (4) (MULTIPLE CHOICE QUESTIONS) |8 Videos
  • AREA OF CURVES

    ML KHANNA|Exercise SELF ASSESSEMENT TEST|16 Videos

Similar Questions

Explore conceptually related problems

Find a unit vector perpendicular to each of the vector -> a+ -> b and -> a- -> b where -> a=3 hat i+2 hat j+2 hat k and -> b= hat i+2 hat j-2 hat k

A vector c perpendicular to the vectors 2i+3j-k" and "i-2j+3k satisfying c.(2i-j+k)=-6 is

A unit vector perpendicular to 3i+4j" and "i-j+k is

Find vec a unit vector perpendicular to each of the vectors vec a=3i+2j-3k and vec b=i+j-k

Given a=i+j-k, b=-i+2j+k" and "c=-i+2j-k . A unit vector perpendicular to both a + b and b + c is

If a=i+j-k,b=i-j+k and c is a unit vector perpendicular to the vector a and coplanar with a and b,then aunit vector d perpendicular to both a and c is

Find a unit vector perpendicular to the vectors hat(j) + 2 hat(k) & hat(i) + hat(j)

ML KHANNA-ADDITION AND MULTIPLICATION OF VECTORS -Self Assessment Test (MULTIPLE CHOICE QUESTIONS)
  1. For any three vectors a, b, c (a-b).{(b-c) xx (c-a)} = 2a.(bxxc). ...

    Text Solution

    |

  2. If a = 4i + 6j and b = 3j+4k, then the vector form of component of a a...

    Text Solution

    |

  3. A unit vector perpendicular to the vector 4i-j+3k and -2i+j-2k is

    Text Solution

    |

  4. The unit vector perpendicular to the two vectors i-j and i+2j, and per...

    Text Solution

    |

  5. If u = i xx (a xx i), + j xx (a xx j) + k xx(a xx k), then

    Text Solution

    |

  6. The volume of a parallelopiped whose sides are given by vecOA =2i-3j,v...

    Text Solution

    |

  7. If alpha = 2i + 3j - k, beta = -i + 2j-4k, gamma = i+j+k then the valu...

    Text Solution

    |

  8. Let vec a=2 hat i- hat j+ hat k , vec b= hat i+2 hat j= hat ka n d ve...

    Text Solution

    |

  9. If the vectors vec c , vec a=x hat i+y hat j+z hat ka n d vec b= hat ...

    Text Solution

    |

  10. If veca lies in the plane of vectors vecb and vecc, then which of the ...

    Text Solution

    |

  11. If a xx b = c, b xx c = a and a, b,c be moduli of the vectors a, b,c...

    Text Solution

    |

  12. Let a-i+j and b=2i-k.The point of intersection of the lines r times a=...

    Text Solution

    |

  13. Let a,b, c be three non-coplanar vectors and r be any vector in space ...

    Text Solution

    |

  14. Let a, b, c be unit vectors such that a + b + c = 0 which one of the f...

    Text Solution

    |

  15. Unit vector vecc is inclined at an angle theta to unit vectors ve...

    Text Solution

    |

  16. If hata,hatb,hatc and hatd are unit vectors such that (hata xx hatb). ...

    Text Solution

    |

  17. If vecu, vecv, vecw are non -coplanar vectors and p,q, are real numbe...

    Text Solution

    |

  18. Let ABCD be a parallelogram such that vec A B= vec q , vec A D= vec p...

    Text Solution

    |

  19. Two vectors a and b are not perpendicular and c and d are two vectors ...

    Text Solution

    |

  20. IF a and b are vectors such that | a + b| = sqrt(29) and a xx (2i+3j+4...

    Text Solution

    |