Home
Class 12
MATHS
cos^(-1)sqrt((a-x)/(a-b))=sin^(-1)sqrt((...

`cos^(-1)sqrt((a-x)/(a-b))=sin^(-1)sqrt((x-b)/(a-b))` for all values of x.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos^{-1}\left(\sqrt{\frac{a-x}{a-b}}\right) = \sin^{-1}\left(\sqrt{\frac{x-b}{a-b}}\right) \) for all values of \( x \), we will follow these steps: ### Step 1: Understand the Relationship Between Inverse Functions Recall the identity that relates the inverse cosine and inverse sine functions: \[ \cos^{-1}(x) = \sin^{-1}(\sqrt{1 - x^2}) \] This means we can express the left-hand side (LHS) in terms of the right-hand side (RHS). ### Step 2: Rewrite the LHS Using the Identity Using the identity, we can rewrite the LHS: \[ \cos^{-1}\left(\sqrt{\frac{a-x}{a-b}}\right) = \sin^{-1}\left(\sqrt{1 - \left(\sqrt{\frac{a-x}{a-b}}\right)^2}\right) \] ### Step 3: Simplify the Expression Inside the Sine Inverse Now simplify the expression inside the sine inverse: \[ 1 - \left(\sqrt{\frac{a-x}{a-b}}\right)^2 = 1 - \frac{a-x}{a-b} = \frac{(a-b) - (a-x)}{a-b} = \frac{x - b}{a-b} \] Thus, we have: \[ \cos^{-1}\left(\sqrt{\frac{a-x}{a-b}}\right) = \sin^{-1}\left(\sqrt{\frac{x-b}{a-b}}\right) \] ### Step 4: Equate the Two Sides Now we can equate the two sides: \[ \sin^{-1}\left(\sqrt{\frac{x-b}{a-b}}\right) = \sin^{-1}\left(\sqrt{\frac{x-b}{a-b}}\right) \] This shows that both sides are equal. ### Step 5: Check the Validity of the Equation For the equation to hold for all \( x \), we need to ensure that both sides are defined. The expressions under the square roots must be non-negative: 1. \( \frac{a-x}{a-b} \geq 0 \) implies \( a-x \geq 0 \) or \( x \leq a \). 2. \( \frac{x-b}{a-b} \geq 0 \) implies \( x-b \geq 0 \) or \( x \geq b \). ### Step 6: Determine the Valid Range for \( x \) From the inequalities: - \( b \leq x \leq a \) This means the equation is valid only for \( x \) in the interval \([b, a]\). ### Conclusion The original statement \( \cos^{-1}\left(\sqrt{\frac{a-x}{a-b}}\right) = \sin^{-1}\left(\sqrt{\frac{x-b}{a-b}}\right) \) is not true for all \( x \in \mathbb{R} \), but it is true for \( x \) in the interval \([b, a]\).
Promotional Banner

Topper's Solved these Questions

  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (2)(MULTIPLE CHOICE QUESTIONS)|46 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (2)(TRUE AND FALSE)|2 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Self Assessment Test|25 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/ REASONS) |3 Videos

Similar Questions

Explore conceptually related problems

cos^(-1)sqrt((a-x)/(a-b))=sin^(-1)sqrt((x-b)/(a-b)) is possible

cos^(-1)sqrt(1-x)+sin^(-1)sqrt(1-x)=

If cos^(-1)sqrt(cos alpha)-sin^(-1)sqrt(cos alpha)=x, then the value of sin x is

If y=sqrt((a-x)(x-b))-(a-b)tan^(-1)sqrt((a-x)/(x-b)), then find(dy)/(dx)

If a,b are real and a^(2)+b^(2)=1, then show that the equation (sqrt(1+x)-i sqrt(1-x))/(sqrt(1+x)+i sqrt(1-x))=a-ib is satisfied y a real value of x.

The minimum value of [x_(1)-x_(2))^(2)+(12-sqrt(1-(x_(1))^(2))-sqrt(4x_(2))]^((1)/(2)) for all permissible values of x_(1) and x_(2) is equal to a sqrt(b)-c where a,b,c in N, the find the value of a +b-c

If the function f(x)=(sqrt(1+cos x)+sqrt(1-cos x))/(sqrt(1+cos x)-sqrt(1-cos x)) If the value of f((pi)/(3))=a+b sqrt(c) then a+b+c=

int sqrt((x)/(1-x))dx is equal to sin^(-1)sqrt(x)+C(b)sin^(-1){sqrt(x)-sqrt(x(1-x))}+C(c)sin^(-1){sqrt(x(1-x)}+C(d))sin^(-1)sqrt(x)-sqrt(x(1-x))+C