Home
Class 12
MATHS
tan[cos^(-1) ""4/5 + tan^(-1)"" 2/3] " o...

`tan[cos^(-1) ""4/5 + tan^(-1)"" 2/3] " or " tan[sin^(-1) ""3/5+ cot^(-1)""3/2]=`

A

`6/17`

B

`7/16`

C

`17/6`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \tan\left(\cos^{-1}\left(\frac{4}{5}\right) + \tan^{-1}\left(\frac{2}{3}\right)\right) \) and \( \tan\left(\sin^{-1}\left(\frac{3}{5}\right) + \cot^{-1}\left(\frac{3}{2}\right)\right) \), we can follow these steps: ### Step 1: Solve \( \tan\left(\cos^{-1}\left(\frac{4}{5}\right) + \tan^{-1}\left(\frac{2}{3}\right)\right) \) Let \( \alpha = \cos^{-1}\left(\frac{4}{5}\right) \) and \( \beta = \tan^{-1}\left(\frac{2}{3}\right) \). Using the identity for tangent of a sum: \[ \tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} \] ### Step 2: Find \( \tan \alpha \) From \( \alpha = \cos^{-1}\left(\frac{4}{5}\right) \): - We know that \( \cos \alpha = \frac{4}{5} \). - To find \( \sin \alpha \), we use the Pythagorean identity: \[ \sin^2 \alpha + \cos^2 \alpha = 1 \implies \sin^2 \alpha = 1 - \left(\frac{4}{5}\right)^2 = 1 - \frac{16}{25} = \frac{9}{25} \] \[ \sin \alpha = \frac{3}{5} \] Thus, \[ \tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{\frac{3}{5}}{\frac{4}{5}} = \frac{3}{4} \] ### Step 3: Find \( \tan \beta \) From \( \beta = \tan^{-1}\left(\frac{2}{3}\right) \): \[ \tan \beta = \frac{2}{3} \] ### Step 4: Substitute into the tangent sum formula Now substituting into the formula: \[ \tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} = \frac{\frac{3}{4} + \frac{2}{3}}{1 - \left(\frac{3}{4} \cdot \frac{2}{3}\right)} \] ### Step 5: Simplify the numerator and denominator Finding a common denominator for the numerator: \[ \tan \alpha + \tan \beta = \frac{3}{4} + \frac{2}{3} = \frac{9}{12} + \frac{8}{12} = \frac{17}{12} \] Now for the denominator: \[ 1 - \tan \alpha \tan \beta = 1 - \left(\frac{3}{4} \cdot \frac{2}{3}\right) = 1 - \frac{1}{2} = \frac{1}{2} \] ### Step 6: Final calculation Now substituting back: \[ \tan(\alpha + \beta) = \frac{\frac{17}{12}}{\frac{1}{2}} = \frac{17}{12} \cdot 2 = \frac{17}{6} \] ### Step 7: Solve \( \tan\left(\sin^{-1}\left(\frac{3}{5}\right) + \cot^{-1}\left(\frac{3}{2}\right)\right) \) Let \( \gamma = \sin^{-1}\left(\frac{3}{5}\right) \) and \( \delta = \cot^{-1}\left(\frac{3}{2}\right) \). Using the same tangent sum formula: \[ \tan(\gamma + \delta) = \frac{\tan \gamma + \tan \delta}{1 - \tan \gamma \tan \delta} \] ### Step 8: Find \( \tan \gamma \) From \( \gamma = \sin^{-1}\left(\frac{3}{5}\right) \): - We know that \( \sin \gamma = \frac{3}{5} \). - To find \( \cos \gamma \): \[ \cos^2 \gamma + \sin^2 \gamma = 1 \implies \cos^2 \gamma = 1 - \left(\frac{3}{5}\right)^2 = 1 - \frac{9}{25} = \frac{16}{25} \] \[ \cos \gamma = \frac{4}{5} \] Thus, \[ \tan \gamma = \frac{\sin \gamma}{\cos \gamma} = \frac{\frac{3}{5}}{\frac{4}{5}} = \frac{3}{4} \] ### Step 9: Find \( \tan \delta \) From \( \delta = \cot^{-1}\left(\frac{3}{2}\right) \): \[ \tan \delta = \frac{1}{\cot \delta} = \frac{2}{3} \] ### Step 10: Substitute into the tangent sum formula Now substituting into the formula: \[ \tan(\gamma + \delta) = \frac{\tan \gamma + \tan \delta}{1 - \tan \gamma \tan \delta} = \frac{\frac{3}{4} + \frac{2}{3}}{1 - \left(\frac{3}{4} \cdot \frac{2}{3}\right)} \] ### Step 11: Simplify the numerator and denominator Finding a common denominator for the numerator: \[ \tan \gamma + \tan \delta = \frac{3}{4} + \frac{2}{3} = \frac{9}{12} + \frac{8}{12} = \frac{17}{12} \] Now for the denominator: \[ 1 - \tan \gamma \tan \delta = 1 - \left(\frac{3}{4} \cdot \frac{2}{3}\right) = 1 - \frac{1}{2} = \frac{1}{2} \] ### Step 12: Final calculation Now substituting back: \[ \tan(\gamma + \delta) = \frac{\frac{17}{12}}{\frac{1}{2}} = \frac{17}{12} \cdot 2 = \frac{17}{6} \] ### Conclusion Both expressions yield the same result: \[ \tan\left(\cos^{-1}\left(\frac{4}{5}\right) + \tan^{-1}\left(\frac{2}{3}\right)\right) = \tan\left(\sin^{-1}\left(\frac{3}{5}\right) + \cot^{-1}\left(\frac{3}{2}\right)\right) = \frac{17}{6} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (2)(TRUE AND FALSE)|2 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (2)(FILL IN THE BLANKS)|2 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (1)(TRUE AND FALSE)|2 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/ REASONS) |3 Videos

Similar Questions

Explore conceptually related problems

sin[cos^(-1)(3/5)+tan^(-1)2]=

cot[csc^(-1)(5/3) + tan^(-1)(2/3)] = ....

tan^(-1) . 3/5 +tan^(-1) . 1/4 = pi/2

Prove that : tan(sin^(-1) (3/5) + cot^(-1)(3/2)) = 17/6

cot(cosec ^(-1)(5/3) + tan^(-1)(2/3))=

sin cot ^ (- 1) cos tan ^ (- 1) 2