Home
Class 12
MATHS
cos^(-1) ""15/17 + 2 tan ^(-1)""1/5=...

`cos^(-1) ""15/17 + 2 tan ^(-1)""1/5=`

A

`pi/2`

B

`cos^(-1) 171/221`

C

`pi/4`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \cos^{-1} \left( \frac{15}{17} \right) + 2 \tan^{-1} \left( \frac{1}{5} \right) \), we will follow these steps: ### Step 1: Rewrite \( 2 \tan^{-1} \left( \frac{1}{5} \right) \) using the double angle formula We know that: \[ 2 \tan^{-1}(x) = \tan^{-1\left(\frac{2x}{1-x^2}\right)} \] Let \( x = \frac{1}{5} \). Then: \[ 2 \tan^{-1} \left( \frac{1}{5} \right) = \tan^{-1} \left( \frac{2 \cdot \frac{1}{5}}{1 - \left(\frac{1}{5}\right)^2} \right) \] Calculating the numerator: \[ 2 \cdot \frac{1}{5} = \frac{2}{5} \] Calculating the denominator: \[ 1 - \left(\frac{1}{5}\right)^2 = 1 - \frac{1}{25} = \frac{24}{25} \] Thus: \[ 2 \tan^{-1} \left( \frac{1}{5} \right) = \tan^{-1} \left( \frac{\frac{2}{5}}{\frac{24}{25}} \right) = \tan^{-1} \left( \frac{2 \cdot 25}{5 \cdot 24} \right) = \tan^{-1} \left( \frac{10}{24} \right) = \tan^{-1} \left( \frac{5}{12} \right) \] ### Step 2: Combine the angles Now we have: \[ \cos^{-1} \left( \frac{15}{17} \right) + \tan^{-1} \left( \frac{5}{12} \right) \] We can use the identity: \[ \cos^{-1}(x) + \tan^{-1}(y) = \tan^{-1} \left( \frac{y}{\sqrt{1-x^2}} \right) \] where \( x = \frac{15}{17} \) and \( y = \frac{5}{12} \). ### Step 3: Calculate \( \sqrt{1 - x^2} \) First, we need to calculate \( 1 - x^2 \): \[ 1 - \left(\frac{15}{17}\right)^2 = 1 - \frac{225}{289} = \frac{289 - 225}{289} = \frac{64}{289} \] Thus: \[ \sqrt{1 - x^2} = \sqrt{\frac{64}{289}} = \frac{8}{17} \] ### Step 4: Substitute into the formula Now we substitute into the identity: \[ \cos^{-1} \left( \frac{15}{17} \right) + \tan^{-1} \left( \frac{5}{12} \right) = \tan^{-1} \left( \frac{\frac{5}{12}}{\frac{8}{17}} \right) \] Calculating the right-hand side: \[ = \tan^{-1} \left( \frac{5 \cdot 17}{12 \cdot 8} \right) = \tan^{-1} \left( \frac{85}{96} \right) \] ### Step 5: Final expression Thus, we have: \[ \cos^{-1} \left( \frac{15}{17} \right) + 2 \tan^{-1} \left( \frac{1}{5} \right) = \tan^{-1} \left( \frac{85}{96} \right) \] ### Conclusion The final answer is: \[ \tan^{-1} \left( \frac{85}{96} \right) \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (2)(TRUE AND FALSE)|2 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (2)(FILL IN THE BLANKS)|2 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (1)(TRUE AND FALSE)|2 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/ REASONS) |3 Videos

Similar Questions

Explore conceptually related problems

Prove that sin ^ (- 1) ((3) / (5)) + cos ^ (- 1) ((15) / (17)) + sin ^ (- 1) ((36) / (85)) = (pi) / (2)

The value of tan[ cos^(-1) ((4)/(5)) + tan^(-1) ((2)/(5)) ] will be

Prove that tan^(-1). 1/2 +tan^(-1). 1/5 = 1/2 cos^(-1). 16/65

Evaluate: i) tan{1/2cos^(-1)sqrt(5)/3} , ii) tan{2tan^(-1)1/5-pi/4}

Prove the following 2 tan^(-1). 1/2 +tan^(-1) . 1/7 = tan^(-1). 31/17