Home
Class 12
MATHS
tan^(-1)""1/7+2tan^(-1)"" 1/3=...

`tan^(-1)""1/7+2tan^(-1)"" 1/3=`

A

`-pi//4`

B

`pi//4`

C

`pi//2`

D

`-pi//2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan^{-1}\left(\frac{1}{7}\right) + 2\tan^{-1}\left(\frac{1}{3}\right) \), we will use the properties of inverse tangent functions. ### Step 1: Use the double angle formula for tangent The double angle formula for tangent states that: \[ 2\tan^{-1}(x) = \tan^{-1}\left(\frac{2x}{1 - x^2}\right) \] Let \( x = \frac{1}{3} \). Then, we can calculate \( 2\tan^{-1}\left(\frac{1}{3}\right) \): \[ 2\tan^{-1}\left(\frac{1}{3}\right) = \tan^{-1}\left(\frac{2 \cdot \frac{1}{3}}{1 - \left(\frac{1}{3}\right)^2}\right) \] ### Step 2: Substitute and simplify Calculating the numerator: \[ 2 \cdot \frac{1}{3} = \frac{2}{3} \] Calculating the denominator: \[ 1 - \left(\frac{1}{3}\right)^2 = 1 - \frac{1}{9} = \frac{8}{9} \] Now substituting these into the formula: \[ 2\tan^{-1}\left(\frac{1}{3}\right) = \tan^{-1}\left(\frac{\frac{2}{3}}{\frac{8}{9}}\right) = \tan^{-1}\left(\frac{2 \cdot 9}{3 \cdot 8}\right) = \tan^{-1}\left(\frac{6}{8}\right) = \tan^{-1}\left(\frac{3}{4}\right) \] ### Step 3: Combine the angles Now we need to combine \( \tan^{-1}\left(\frac{1}{7}\right) \) and \( \tan^{-1}\left(\frac{3}{4}\right) \) using the addition formula: \[ \tan^{-1}(x) + \tan^{-1}(y) = \tan^{-1}\left(\frac{x + y}{1 - xy}\right) \] Let \( x = \frac{1}{7} \) and \( y = \frac{3}{4} \): \[ \tan^{-1}\left(\frac{1}{7}\right) + \tan^{-1}\left(\frac{3}{4}\right) = \tan^{-1}\left(\frac{\frac{1}{7} + \frac{3}{4}}{1 - \frac{1}{7} \cdot \frac{3}{4}}\right) \] ### Step 4: Calculate the numerator and denominator Calculating the numerator: \[ \frac{1}{7} + \frac{3}{4} = \frac{4 + 21}{28} = \frac{25}{28} \] Calculating the denominator: \[ 1 - \frac{1}{7} \cdot \frac{3}{4} = 1 - \frac{3}{28} = \frac{28 - 3}{28} = \frac{25}{28} \] ### Step 5: Combine the results Now substituting back into the formula: \[ \tan^{-1}\left(\frac{\frac{25}{28}}{\frac{25}{28}}\right) = \tan^{-1}(1) = \frac{\pi}{4} \] ### Final Answer Thus, the final result is: \[ \tan^{-1}\left(\frac{1}{7}\right) + 2\tan^{-1}\left(\frac{1}{3}\right) = \frac{\pi}{4} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (2)(TRUE AND FALSE)|2 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (2)(FILL IN THE BLANKS)|2 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (1)(TRUE AND FALSE)|2 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/ REASONS) |3 Videos

Similar Questions

Explore conceptually related problems

Prove that 2 tan^(-1) . 1/7 +tan^(-1) . 1/3 = tan^(-1) . 9/13

Prove that tan^(-1). 1/7 + tan^(-1). 1/13 = tan^(-1). 2/9

Prove the following: tan^(-1)1/7+2\ tan^(-1)1/3=pi/4

tan^(-1) (1/5) + tan^(-1) (1/7) + tan^(-1) (1/3) + tan^(-1) (1/8) = π/4

Solve : 3 tan^(-1) (1/(2+sqrt(3)))-tan^(-1)(1/x) = tan^(-1) (1/3)

Pove that i) tan^(-1)1/2+tan^(-1)2/11=tan^(-1)3/4 ii) tan^(-1)2/11+tan^(-1)7/24=tan^(-1)1/2 iii) tan^(-1)1+tan^(-1)1/2+tan^(-1)1/3=pi/2 iv) 2tan^(-1)1/3+tan^(-1)/17=pi/4 v) tan^(-1)2-tan^(-1)1=tan^(-1)1/3 vi) tan^(-1)+tan^(-1)2+tan^(-1)3=pi vii) tan^(-1)1/2+tan^(-1)1/5+tan^(-1)1/8=pi/4 viii) tan^(-1)1/4+tan^(-1)2/9=1/2tan^(-1)4/3

If A=tan^(-1)(1//7), B=tan^(-1)(1//3) , then

ML KHANNA-INVERSE CIRCULAR FUNCTIONS -Problem Set (2)(MULTIPLE CHOICE QUESTIONS)
  1. What is the value of sin^(-1)""(4)/(5)+2tan^(-1)""(1)/(3)?

    Text Solution

    |

  2. The value of cot^(pi)/(4)-2 cot^(-13) is

    Text Solution

    |

  3. tan^(-1)""1/7+2tan^(-1)"" 1/3=

    Text Solution

    |

  4. Find the value of expression: sin(2tan^(-1)1/3)+cos(tan^(-1)2sqrt(2))

    Text Solution

    |

  5. Find the value of tan^(-1)(x/y)-tan^(-1)((x-y)/(x+y))

    Text Solution

    |

  6. If A=tan^(-1) ""(xsqrt3)/(2lambda-x) and B=tan^(-1)""((2x-lambda)/(lam...

    Text Solution

    |

  7. Given , 0lexle(1)/(2), then the value of tan["sin"^(-1){(x)/(sqrt(2))...

    Text Solution

    |

  8. Value of tan^(-1) ""a/(b+c)+tan^(-1)"" b/(c+a), " if " angleC=90^@ " i...

    Text Solution

    |

  9. cot^(-1)9 + cos^(-1)sqrt(41)/4=

    Text Solution

    |

  10. If theta = cot^(-1) 7+cot^(-1) 8+cot^(-1) 18, " then " cot theta is

    Text Solution

    |

  11. tan^(-1)1/2+tan^(-1)1/3=?

    Text Solution

    |

  12. If tan(x+y)=33, and x= tan^(-1)3, then: y=

    Text Solution

    |

  13. overset(3)underset(n=1)Sigma tan^(-1) 1/n =

    Text Solution

    |

  14. IF tan^-1 2, tan^-1 3 are two angles of a triangle , then the third an...

    Text Solution

    |

  15. tan^(-1) ""3/4 + tan^(-1) ""3/5 - tan^(-1) ""8/19=

    Text Solution

    |

  16. Evaluate sin^(-1) . 4/5 + sin^(-1) . 5/13 + sin^(-1) . 16/65

    Text Solution

    |

  17. tan^(-1)5+tan^(-1) 3-cot^(-1) "4/7=

    Text Solution

    |

  18. sin^(-1) ""12/13 + cos^(-1)"" 4/5 tan^(-1) ""63/16=

    Text Solution

    |

  19. Prove that tan^(-1). 1/2 + tan^(-1) . 1/5 + tan^(-1). 1/8 = pi/4

    Text Solution

    |

  20. 2tan^(-1) ""1/5 + sec^(-1) ""(5sqrt2)/7 +2 tan^(-1)"1/8=

    Text Solution

    |