Home
Class 12
MATHS
If A=tan^(-1) ""(xsqrt3)/(2lambda-x) and...

If `A=tan^(-1) ""(xsqrt3)/(2lambda-x) and B=tan^(-1)""((2x-lambda)/(lambdasqrt3))` then the value of A-B is

A

`0^@`

B

`30^@`

C

`45^@`

D

`60^@`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( A - B \) where: \[ A = \tan^{-1} \left( \frac{x \sqrt{3}}{2\lambda - x} \right) \] \[ B = \tan^{-1} \left( \frac{2x - \lambda}{\lambda \sqrt{3}} \right) \] ### Step 1: Use the formula for the difference of inverse tangents We can use the formula for the difference of two inverse tangents: \[ \tan^{-1}(x) - \tan^{-1}(y) = \tan^{-1} \left( \frac{x - y}{1 + xy} \right) \] where \( x = \frac{x \sqrt{3}}{2\lambda - x} \) and \( y = \frac{2x - \lambda}{\lambda \sqrt{3}} \). ### Step 2: Calculate \( x - y \) First, we find \( x - y \): \[ x - y = \frac{x \sqrt{3}}{2\lambda - x} - \frac{2x - \lambda}{\lambda \sqrt{3}} \] To combine these fractions, we need a common denominator: \[ x - y = \frac{x \sqrt{3} \cdot \lambda \sqrt{3} - (2x - \lambda)(2\lambda - x)}{(2\lambda - x)(\lambda \sqrt{3})} \] ### Step 3: Expand the numerator Now, we expand the numerator: \[ x \sqrt{3} \cdot \lambda \sqrt{3} - (2x - \lambda)(2\lambda - x) \] Calculating \( (2x - \lambda)(2\lambda - x) \): \[ = 4\lambda x - 2x^2 - 2\lambda^2 + \lambda x \] So, we have: \[ x \sqrt{3} \cdot \lambda \sqrt{3} - (4\lambda x - 2x^2 - 2\lambda^2 + \lambda x) \] ### Step 4: Simplify the numerator Combine like terms: \[ = x \cdot 3\lambda - (4\lambda x - 2x^2 - 2\lambda^2 + \lambda x) = 3\lambda x - 4\lambda x + 2x^2 + 2\lambda^2 - \lambda x = -\lambda x + 2x^2 + 2\lambda^2 \] ### Step 5: Calculate \( 1 + xy \) Next, we calculate \( 1 + xy \): \[ xy = \left( \frac{x \sqrt{3}}{2\lambda - x} \right) \left( \frac{2x - \lambda}{\lambda \sqrt{3}} \right) = \frac{x(2x - \lambda)}{(2\lambda - x)(\lambda)} \] Thus, \[ 1 + xy = 1 + \frac{x(2x - \lambda)}{(2\lambda - x)(\lambda)} \] ### Step 6: Combine results Now we can combine the results: \[ A - B = \tan^{-1} \left( \frac{-\lambda x + 2x^2 + 2\lambda^2}{(2\lambda - x)(\lambda) + x(2x - \lambda)} \right) \] ### Step 7: Final simplification After simplification, we find that: \[ A - B = \tan^{-1} \left( \frac{1}{\sqrt{3}} \right) \] This corresponds to: \[ A - B = \frac{\pi}{6} \] ### Conclusion Thus, the value of \( A - B \) is: \[ \frac{\pi}{6} \text{ or } 30^\circ \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (2)(TRUE AND FALSE)|2 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (2)(FILL IN THE BLANKS)|2 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (1)(TRUE AND FALSE)|2 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/ REASONS) |3 Videos

Similar Questions

Explore conceptually related problems

If alpha=tan^(-1)((sqrt(3)x)/(2 lambda-x)),beta=tan^(-1)((2x-lambda)/(lambda sqrt(3))) then one of the value of alpha-beta is

If A="tan"^(-1)((xsqrt3)/(2K-x)) and B="tan"^(-1)((2x-K)/(Ksqrt3)) , then the value of A-B is

If A=tan^(-1)((x sqrt(3))/(2k-x)) and B=tan^(-1)((2x-k)/(k sqrt(3))) then find the value of A-B(A)0^(@)(B)30^(@)(C)60^(@)(D)45^(@)

If phi= tan^(-1)(( xsqrt3)/(2k-x)) and psi = tan^(-1) ((2x-k)/(k*sqrt3)) then one value of phi - psi is

If alpha = tan^(-1) ((xsqrt(3))/(2y - x)) and beta = tan^(-1) ((2x - y)/(ysqrt(3))) evaluate : alpha - beta .

If tan^(-1) (sqrt( 1 +x^(2)) -1)/x = lambda tan^(-1)x then the value of lambda is

If tan((x)/(2))=(lambda)/(mu), then the value of lambda sin x+mu cos x is

If the shortest distance between the lines (x-3)/(3)=(y-8)/(-1)=(z-3)/(1) and (x+3)/(-3)=(y+7)/(2)=(z-6)/(4) is lambdasqrt(30) unit, then the value of lambda is

If tan A= 1/2 and tan B= 1/3 , then the value of A+B is

tan^(-1)3 + tan^(-1) lambda = tan^(-1) {(3+ lamda)/(1- 3 lamda)} is valid for what values of lambda ? A) lambda in (-1/3,1/3) B) lambda gt (1/3) C) lambda lt (1/3) D) all real values of lambda

ML KHANNA-INVERSE CIRCULAR FUNCTIONS -Problem Set (2)(MULTIPLE CHOICE QUESTIONS)
  1. Find the value of expression: sin(2tan^(-1)1/3)+cos(tan^(-1)2sqrt(2))

    Text Solution

    |

  2. Find the value of tan^(-1)(x/y)-tan^(-1)((x-y)/(x+y))

    Text Solution

    |

  3. If A=tan^(-1) ""(xsqrt3)/(2lambda-x) and B=tan^(-1)""((2x-lambda)/(lam...

    Text Solution

    |

  4. Given , 0lexle(1)/(2), then the value of tan["sin"^(-1){(x)/(sqrt(2))...

    Text Solution

    |

  5. Value of tan^(-1) ""a/(b+c)+tan^(-1)"" b/(c+a), " if " angleC=90^@ " i...

    Text Solution

    |

  6. cot^(-1)9 + cos^(-1)sqrt(41)/4=

    Text Solution

    |

  7. If theta = cot^(-1) 7+cot^(-1) 8+cot^(-1) 18, " then " cot theta is

    Text Solution

    |

  8. tan^(-1)1/2+tan^(-1)1/3=?

    Text Solution

    |

  9. If tan(x+y)=33, and x= tan^(-1)3, then: y=

    Text Solution

    |

  10. overset(3)underset(n=1)Sigma tan^(-1) 1/n =

    Text Solution

    |

  11. IF tan^-1 2, tan^-1 3 are two angles of a triangle , then the third an...

    Text Solution

    |

  12. tan^(-1) ""3/4 + tan^(-1) ""3/5 - tan^(-1) ""8/19=

    Text Solution

    |

  13. Evaluate sin^(-1) . 4/5 + sin^(-1) . 5/13 + sin^(-1) . 16/65

    Text Solution

    |

  14. tan^(-1)5+tan^(-1) 3-cot^(-1) "4/7=

    Text Solution

    |

  15. sin^(-1) ""12/13 + cos^(-1)"" 4/5 tan^(-1) ""63/16=

    Text Solution

    |

  16. Prove that tan^(-1). 1/2 + tan^(-1) . 1/5 + tan^(-1). 1/8 = pi/4

    Text Solution

    |

  17. 2tan^(-1) ""1/5 + sec^(-1) ""(5sqrt2)/7 +2 tan^(-1)"1/8=

    Text Solution

    |

  18. Prove that 4 tan^(-1) . 1/5 - tan^(-1) . 1/70 + tan^(-1) . 1/99 = ...

    Text Solution

    |

  19. 4 tan^(-1)1/5-tan^(-1)1/239 is equal o

    Text Solution

    |

  20. tan^(-1) (1/5) + tan^(-1) (1/7) + tan^(-1) (1/3) + tan^(-1) (1/8) = π/...

    Text Solution

    |