Home
Class 12
MATHS
Value of tan^(-1) ""a/(b+c)+tan^(-1)"" b...

Value of `tan^(-1) ""a/(b+c)+tan^(-1)"" b/(c+a), " if " angleC=90^@ " in " DeltaABC=`

A

`pi/4`

B

`pi/3`

C

`pi/2`

D

`pi`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \tan^{-1} \left( \frac{a}{b+c} \right) + \tan^{-1} \left( \frac{b}{c+a} \right) \) given that \( \angle C = 90^\circ \) in triangle ABC, we can use the properties of right triangles and the tangent addition formula. ### Step-by-Step Solution: 1. **Understanding the Triangle Configuration**: Since \( \angle C = 90^\circ \), we can label the sides of the triangle as follows: - Let \( a \) be the length of side opposite angle A. - Let \( b \) be the length of side opposite angle B. - Let \( c \) be the length of the hypotenuse (the side opposite the right angle). 2. **Using the Tangent Function**: In a right triangle, the tangent of an angle is the ratio of the opposite side to the adjacent side. Therefore: - \( \tan A = \frac{a}{b} \) - \( \tan B = \frac{b}{a} \) 3. **Applying the Tangent Addition Formula**: We can use the formula for the sum of two inverse tangents: \[ \tan^{-1} x + \tan^{-1} y = \tan^{-1} \left( \frac{x+y}{1-xy} \right) \quad \text{if } xy < 1 \] Here, let \( x = \frac{a}{b+c} \) and \( y = \frac{b}{c+a} \). 4. **Finding the Sum**: We need to calculate: \[ \tan^{-1} \left( \frac{a}{b+c} \right) + \tan^{-1} \left( \frac{b}{c+a} \right) = \tan^{-1} \left( \frac{\frac{a}{b+c} + \frac{b}{c+a}}{1 - \frac{a}{b+c} \cdot \frac{b}{c+a}} \right) \] 5. **Calculating the Numerator**: The numerator becomes: \[ \frac{a(c+a) + b(b+c)}{(b+c)(c+a)} = \frac{ac + a^2 + b^2 + bc}{(b+c)(c+a)} \] 6. **Calculating the Denominator**: The denominator becomes: \[ 1 - \frac{ab}{(b+c)(c+a)} = \frac{(b+c)(c+a) - ab}{(b+c)(c+a)} = \frac{bc + ac + c^2}{(b+c)(c+a)} \] 7. **Final Expression**: Thus, we have: \[ \tan^{-1} \left( \frac{ac + a^2 + b^2 + bc}{bc + ac + c^2} \right) \] 8. **Using Pythagorean Theorem**: Since \( c^2 = a^2 + b^2 \) (from the Pythagorean theorem), we can substitute \( c^2 \) into our expression. 9. **Conclusion**: After simplification, we find that: \[ \tan^{-1} \left( \frac{a}{b+c} \right) + \tan^{-1} \left( \frac{b}{c+a} \right) = \frac{\pi}{4} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (2)(TRUE AND FALSE)|2 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (2)(FILL IN THE BLANKS)|2 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (1)(TRUE AND FALSE)|2 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/ REASONS) |3 Videos

Similar Questions

Explore conceptually related problems

Q.the value of tan^(-1)((a)/(b+c))+tan^(-1)((b)/(c+a)), if /_=90^(@) in triangle ABC, is

tan^(-1)( (a+b tan c)/ (b-a tan x) )

The value of a sin 0^(@) + b cos 90^(@)+ c tan 45^(@) is

if tan ^(2)""(pi-A)/(4)+tan^(2)""(pi-B)/(4) + tan^(2)""(pi-C)/(4) =1, then DeltaABC is

If in triangle ABC, C = 90^circ then prove that tan^(-1) (a/(c+b)) + tan^(-1) (b/(a+c)) = pi/4 .

if tan^(-1)a+tan^(-1)b+tan^(-1)c=pi then prove that a+b+c=abc

1-tan(A)/(2)tan(B)/(2)=(2c)/(a+b+c)

Let a, b and c be positive real numbers. Then prove that tan^(-1) sqrt((a(a + b + c))/(bc)) + tan^(-1) sqrt((b (a + b + c))/(ca)) + tan^(-1) sqrt((c(a + b+ c))/(ab)) = pi

ML KHANNA-INVERSE CIRCULAR FUNCTIONS -Problem Set (2)(MULTIPLE CHOICE QUESTIONS)
  1. If A=tan^(-1) ""(xsqrt3)/(2lambda-x) and B=tan^(-1)""((2x-lambda)/(lam...

    Text Solution

    |

  2. Given , 0lexle(1)/(2), then the value of tan["sin"^(-1){(x)/(sqrt(2))...

    Text Solution

    |

  3. Value of tan^(-1) ""a/(b+c)+tan^(-1)"" b/(c+a), " if " angleC=90^@ " i...

    Text Solution

    |

  4. cot^(-1)9 + cos^(-1)sqrt(41)/4=

    Text Solution

    |

  5. If theta = cot^(-1) 7+cot^(-1) 8+cot^(-1) 18, " then " cot theta is

    Text Solution

    |

  6. tan^(-1)1/2+tan^(-1)1/3=?

    Text Solution

    |

  7. If tan(x+y)=33, and x= tan^(-1)3, then: y=

    Text Solution

    |

  8. overset(3)underset(n=1)Sigma tan^(-1) 1/n =

    Text Solution

    |

  9. IF tan^-1 2, tan^-1 3 are two angles of a triangle , then the third an...

    Text Solution

    |

  10. tan^(-1) ""3/4 + tan^(-1) ""3/5 - tan^(-1) ""8/19=

    Text Solution

    |

  11. Evaluate sin^(-1) . 4/5 + sin^(-1) . 5/13 + sin^(-1) . 16/65

    Text Solution

    |

  12. tan^(-1)5+tan^(-1) 3-cot^(-1) "4/7=

    Text Solution

    |

  13. sin^(-1) ""12/13 + cos^(-1)"" 4/5 tan^(-1) ""63/16=

    Text Solution

    |

  14. Prove that tan^(-1). 1/2 + tan^(-1) . 1/5 + tan^(-1). 1/8 = pi/4

    Text Solution

    |

  15. 2tan^(-1) ""1/5 + sec^(-1) ""(5sqrt2)/7 +2 tan^(-1)"1/8=

    Text Solution

    |

  16. Prove that 4 tan^(-1) . 1/5 - tan^(-1) . 1/70 + tan^(-1) . 1/99 = ...

    Text Solution

    |

  17. 4 tan^(-1)1/5-tan^(-1)1/239 is equal o

    Text Solution

    |

  18. tan^(-1) (1/5) + tan^(-1) (1/7) + tan^(-1) (1/3) + tan^(-1) (1/8) = π/...

    Text Solution

    |

  19. sin[1/2 cot^(-1)"(-3/4)] is equal to

    Text Solution

    |

  20. Find the value of tan ( 1/2 cos ^(-1) . sqrt5/3)

    Text Solution

    |