Home
Class 12
MATHS
If theta = cot^(-1) 7+cot^(-1) 8+cot^(-1...

If `theta = cot^(-1) 7+cot^(-1) 8+cot^(-1) 18, " then " cot theta` is

A

2

B

3

C

4

D

5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \cot \theta \) given that \( \theta = \cot^{-1}(7) + \cot^{-1}(8) + \cot^{-1}(18) \). ### Step-by-Step Solution: 1. **Convert \( \cot^{-1} \) to \( \tan^{-1} \)**: We know that: \[ \cot^{-1}(x) = \tan^{-1}\left(\frac{1}{x}\right) \] Therefore, we can rewrite \( \theta \) as: \[ \theta = \tan^{-1}\left(\frac{1}{7}\right) + \tan^{-1}\left(\frac{1}{8}\right) + \tan^{-1}\left(\frac{1}{18}\right) \] 2. **Use the formula for the sum of arctangents**: The formula for the sum of two arctangents is: \[ \tan^{-1}(x) + \tan^{-1}(y) = \tan^{-1}\left(\frac{x + y}{1 - xy}\right) \quad \text{if } xy < 1 \] First, we will combine the first two terms: \[ \tan^{-1}\left(\frac{1}{7}\right) + \tan^{-1}\left(\frac{1}{8}\right) = \tan^{-1}\left(\frac{\frac{1}{7} + \frac{1}{8}}{1 - \frac{1}{7} \cdot \frac{1}{8}}\right) \] 3. **Calculate the numerator and denominator**: - **Numerator**: \[ \frac{1}{7} + \frac{1}{8} = \frac{8 + 7}{56} = \frac{15}{56} \] - **Denominator**: \[ 1 - \frac{1}{7} \cdot \frac{1}{8} = 1 - \frac{1}{56} = \frac{55}{56} \] 4. **Combine the results**: Thus, \[ \tan^{-1}\left(\frac{\frac{15}{56}}{\frac{55}{56}}\right) = \tan^{-1}\left(\frac{15}{55}\right) = \tan^{-1}\left(\frac{3}{11}\right) \] 5. **Now add the third term**: Now we need to add \( \tan^{-1}\left(\frac{3}{11}\right) + \tan^{-1}\left(\frac{1}{18}\right) \): \[ \tan^{-1}\left(\frac{3}{11}\right) + \tan^{-1}\left(\frac{1}{18}\right) = \tan^{-1}\left(\frac{\frac{3}{11} + \frac{1}{18}}{1 - \frac{3}{11} \cdot \frac{1}{18}}\right) \] 6. **Calculate the new numerator and denominator**: - **Numerator**: \[ \frac{3}{11} + \frac{1}{18} = \frac{3 \cdot 18 + 1 \cdot 11}{198} = \frac{54 + 11}{198} = \frac{65}{198} \] - **Denominator**: \[ 1 - \frac{3}{11} \cdot \frac{1}{18} = 1 - \frac{3}{198} = \frac{195}{198} \] 7. **Combine the results**: Thus, \[ \tan^{-1}\left(\frac{\frac{65}{198}}{\frac{195}{198}}\right) = \tan^{-1}\left(\frac{65}{195}\right) = \tan^{-1}\left(\frac{13}{39}\right) = \tan^{-1}\left(\frac{1}{3}\right) \] 8. **Find \( \cot \theta \)**: Since \( \theta = \tan^{-1}\left(\frac{1}{3}\right) \), we have: \[ \cot \theta = \frac{1}{\tan \theta} = 3 \] ### Final Answer: \[ \cot \theta = 3 \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (2)(TRUE AND FALSE)|2 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (2)(FILL IN THE BLANKS)|2 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (1)(TRUE AND FALSE)|2 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/ REASONS) |3 Videos

Similar Questions

Explore conceptually related problems

Find the sum cot^(-1) 2 + cot^(-1) 8 + cot^(-1) 18 + ...oo

Prove that : cot^(-1)7+cot^(-1)8+cot^(-1)18=cot^(-1)3

Prove that : cot ^(-1)7+cot^(-1)8+cot^(-1)18=cot^(-1)3

If 0 =1+cot theta

If cot^(-1) ( alpha) = cot^(-1)(2) + cot^(-1)(8) + cot^(-1)(18) + cot ^(-1)(32) + "…………" upto 100 terms , then alpha is :

Prove that cot theta + cot (60^(@) theta) + cot (120^(@) + theta) = 3 cot 3 theta .

Prove that: ("cosec" theta + cot theta)/("cosec" theta - cot theta) = ("cosec" theta + cot theta )^(2) = 1 + 2 cot^(2) theta + 2 "cosec" theta cot theta .