Home
Class 12
MATHS
overset(3)underset(n=1)Sigma tan^(-1) 1/...

`overset(3)underset(n=1)Sigma tan^(-1) 1/n =`

A

0

B

`pi//2`

C

`pi`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \(\sum_{n=1}^{3} \tan^{-1} \frac{1}{n}\), we will evaluate the sum step by step. ### Step 1: Write the sum explicitly We need to evaluate: \[ \tan^{-1} \frac{1}{1} + \tan^{-1} \frac{1}{2} + \tan^{-1} \frac{1}{3} \] ### Step 2: Calculate \(\tan^{-1} \frac{1}{1}\) \[ \tan^{-1} \frac{1}{1} = \tan^{-1}(1) = \frac{\pi}{4} \] ### Step 3: Calculate \(\tan^{-1} \frac{1}{2}\) Let \(x = \tan^{-1} \frac{1}{2}\). ### Step 4: Calculate \(\tan^{-1} \frac{1}{3}\) Let \(y = \tan^{-1} \frac{1}{3}\). ### Step 5: Use the formula for the sum of inverse tangents We will use the formula: \[ \tan^{-1} x + \tan^{-1} y = \tan^{-1} \left( \frac{x+y}{1-xy} \right) \] for \(xy < 1\). First, we will find \(\tan^{-1} \frac{1}{2} + \tan^{-1} \frac{1}{3}\): \[ \tan^{-1} \frac{1}{2} + \tan^{-1} \frac{1}{3} = \tan^{-1} \left( \frac{\frac{1}{2} + \frac{1}{3}}{1 - \left(\frac{1}{2} \cdot \frac{1}{3}\right)} \right) \] ### Step 6: Simplify the expression Calculating the numerator: \[ \frac{1}{2} + \frac{1}{3} = \frac{3 + 2}{6} = \frac{5}{6} \] Calculating the denominator: \[ 1 - \left(\frac{1}{2} \cdot \frac{1}{3}\right) = 1 - \frac{1}{6} = \frac{5}{6} \] Thus, \[ \tan^{-1} \frac{1}{2} + \tan^{-1} \frac{1}{3} = \tan^{-1} \left( \frac{\frac{5}{6}}{\frac{5}{6}} \right) = \tan^{-1}(1) = \frac{\pi}{4} \] ### Step 7: Combine with \(\tan^{-1} \frac{1}{1}\) Now we can add \(\tan^{-1} \frac{1}{1}\): \[ \tan^{-1} \frac{1}{1} + \left(\tan^{-1} \frac{1}{2} + \tan^{-1} \frac{1}{3}\right) = \frac{\pi}{4} + \frac{\pi}{4} = \frac{\pi}{2} \] ### Final Answer Thus, the value of the sum is: \[ \sum_{n=1}^{3} \tan^{-1} \frac{1}{n} = \frac{\pi}{2} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (2)(TRUE AND FALSE)|2 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (2)(FILL IN THE BLANKS)|2 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (1)(TRUE AND FALSE)|2 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/ REASONS) |3 Videos

Similar Questions

Explore conceptually related problems

Let P_(n) denote the product of first n terms of the G.P. 16, 4, 1, 1/4,…., then overset(oo)underset(n=1)Sigma (P_(n))^(1//n) =

Suppose a_(1),a_(2),…a_(201) gt 0 and are in G.P. If a_(101)=36 and overset(201)underset(n=1)Sigma a_(n)=216" then "3overset(201)underset(n=1) Sigma (1)/(a_(n))=

Let a_(n) be the nth term of a G.P. of positive real numbers. If overset(200)underset(n=1)Sigma a_(2n)=4 and overset(200)underset(n=1)Sigma a_(2n-1)=5 , then the common ratio of the G.P. is

sum of the series overset(n)underset(r=1)Sigma (r) /(r+1! ) is