Home
Class 12
MATHS
tan^(-1) ""3/4 + tan^(-1) ""3/5 - tan^(-...

`tan^(-1) ""3/4 + tan^(-1) ""3/5 - tan^(-1) ""8/19=`

A

`pi/2`

B

`(3pi)/8`

C

`(5pi)/8`

D

`pi/4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \tan^{-1} \frac{3}{4} + \tan^{-1} \frac{3}{5} - \tan^{-1} \frac{8}{19} \), we can use the properties of inverse tangent functions. ### Step 1: Use the addition formula for inverse tangent We start by applying the formula for the sum of two inverse tangents: \[ \tan^{-1} x + \tan^{-1} y = \tan^{-1} \left( \frac{x + y}{1 - xy} \right) \] for \( xy < 1 \). Let \( x = \frac{3}{4} \) and \( y = \frac{3}{5} \). ### Step 2: Calculate \( x + y \) and \( 1 - xy \) Calculate \( x + y \): \[ x + y = \frac{3}{4} + \frac{3}{5} \] To add these fractions, find a common denominator: \[ \text{LCM of } 4 \text{ and } 5 = 20 \] Thus, \[ x + y = \frac{3 \times 5}{20} + \frac{3 \times 4}{20} = \frac{15 + 12}{20} = \frac{27}{20} \] Now calculate \( xy \): \[ xy = \frac{3}{4} \cdot \frac{3}{5} = \frac{9}{20} \] Now calculate \( 1 - xy \): \[ 1 - xy = 1 - \frac{9}{20} = \frac{20 - 9}{20} = \frac{11}{20} \] ### Step 3: Substitute into the formula Now substitute \( x + y \) and \( 1 - xy \) into the formula: \[ \tan^{-1} \frac{3}{4} + \tan^{-1} \frac{3}{5} = \tan^{-1} \left( \frac{\frac{27}{20}}{\frac{11}{20}} \right) = \tan^{-1} \left( \frac{27}{11} \right) \] ### Step 4: Combine with the third term Now we need to subtract \( \tan^{-1} \frac{8}{19} \): \[ \tan^{-1} \frac{27}{11} - \tan^{-1} \frac{8}{19} \] We use the subtraction formula for inverse tangent: \[ \tan^{-1} x - \tan^{-1} y = \tan^{-1} \left( \frac{x - y}{1 + xy} \right) \] Let \( x = \frac{27}{11} \) and \( y = \frac{8}{19} \). ### Step 5: Calculate \( x - y \) and \( 1 + xy \) Calculate \( x - y \): \[ x - y = \frac{27}{11} - \frac{8}{19} \] Finding a common denominator: \[ \text{LCM of } 11 \text{ and } 19 = 209 \] Thus, \[ x - y = \frac{27 \times 19}{209} - \frac{8 \times 11}{209} = \frac{513 - 88}{209} = \frac{425}{209} \] Now calculate \( xy \): \[ xy = \frac{27}{11} \cdot \frac{8}{19} = \frac{216}{209} \] Now calculate \( 1 + xy \): \[ 1 + xy = 1 + \frac{216}{209} = \frac{209 + 216}{209} = \frac{425}{209} \] ### Step 6: Substitute into the formula Now substitute \( x - y \) and \( 1 + xy \) into the formula: \[ \tan^{-1} \frac{27}{11} - \tan^{-1} \frac{8}{19} = \tan^{-1} \left( \frac{\frac{425}{209}}{\frac{425}{209}} \right) = \tan^{-1}(1) \] ### Step 7: Final result Since \( \tan^{-1}(1) = \frac{\pi}{4} \), we have: \[ \tan^{-1} \frac{3}{4} + \tan^{-1} \frac{3}{5} - \tan^{-1} \frac{8}{19} = \frac{\pi}{4} \] ### Conclusion The final answer is: \[ \frac{\pi}{4} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (2)(TRUE AND FALSE)|2 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (2)(FILL IN THE BLANKS)|2 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (1)(TRUE AND FALSE)|2 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/ REASONS) |3 Videos

Similar Questions

Explore conceptually related problems

tan^(-1)3 + tan^(-1)4=

tan^(-1) (1/5) + tan^(-1) (1/8) =

Prove that tan^(-1). 1/2 + tan^(-1) . 1/5 + tan^(-1). 1/8 = pi/4

tan^(-1) (1/5) + tan^(-1) (1/7) + tan^(-1) (1/3) + tan^(-1) (1/8) = π/4

Prove that tan^(-1) (1/8) +tan^(-1) (1/5) =tan^(-1) (1/3)

If: tan^(-1)(1/3) + tan^(-1)( 3/4) - tan^(-1)(x/3) =0 , then: x=

Prove that tan^ (-1)( 1/3) +tan^(-1)( 1/5) + tan^(-1) (1/7 )+tan^(-1) (1/8) = pi/4

ML KHANNA-INVERSE CIRCULAR FUNCTIONS -Problem Set (2)(MULTIPLE CHOICE QUESTIONS)
  1. overset(3)underset(n=1)Sigma tan^(-1) 1/n =

    Text Solution

    |

  2. IF tan^-1 2, tan^-1 3 are two angles of a triangle , then the third an...

    Text Solution

    |

  3. tan^(-1) ""3/4 + tan^(-1) ""3/5 - tan^(-1) ""8/19=

    Text Solution

    |

  4. Evaluate sin^(-1) . 4/5 + sin^(-1) . 5/13 + sin^(-1) . 16/65

    Text Solution

    |

  5. tan^(-1)5+tan^(-1) 3-cot^(-1) "4/7=

    Text Solution

    |

  6. sin^(-1) ""12/13 + cos^(-1)"" 4/5 tan^(-1) ""63/16=

    Text Solution

    |

  7. Prove that tan^(-1). 1/2 + tan^(-1) . 1/5 + tan^(-1). 1/8 = pi/4

    Text Solution

    |

  8. 2tan^(-1) ""1/5 + sec^(-1) ""(5sqrt2)/7 +2 tan^(-1)"1/8=

    Text Solution

    |

  9. Prove that 4 tan^(-1) . 1/5 - tan^(-1) . 1/70 + tan^(-1) . 1/99 = ...

    Text Solution

    |

  10. 4 tan^(-1)1/5-tan^(-1)1/239 is equal o

    Text Solution

    |

  11. tan^(-1) (1/5) + tan^(-1) (1/7) + tan^(-1) (1/3) + tan^(-1) (1/8) = π/...

    Text Solution

    |

  12. sin[1/2 cot^(-1)"(-3/4)] is equal to

    Text Solution

    |

  13. Find the value of tan ( 1/2 cos ^(-1) . sqrt5/3)

    Text Solution

    |

  14. tan^(-1)((1)/(4))+tan^(-1)((2)/(9)) is equal to :

    Text Solution

    |

  15. cot[cos^(-1)"7/25]=

    Text Solution

    |

  16. sin^(-1)(3/5)+tan^(-1)(1/7)=

    Text Solution

    |

  17. If alpha=sin^(-1)"" 4/5+sin^(-1) ""1/3 and beta=cos^(-1) "" 4/5+cos^(-...

    Text Solution

    |

  18. If cos^(-1)"" p/a+cos^(-1) ""q/b=alpha " then " p^2/a^2 - (2pq)/(ab) c...

    Text Solution

    |

  19. If cos^(-1)x//2+cos^(-1) y//3=theta," prove that "9x^(2)-12xy cos thet...

    Text Solution

    |

  20. If cos^(-1) x - cos^(-1). y/2= alpha ", then " 4x^(2) - 4xy cos alpha...

    Text Solution

    |