Home
Class 12
MATHS
sin^(-1) ""12/13 + cos^(-1)"" 4/5 tan^(-...

`sin^(-1) ""12/13 + cos^(-1)"" 4/5 tan^(-1) ""63/16=`

A

0

B

`pi//2`

C

`pi`

D

`3pi//2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \sin^{-1}\left(\frac{12}{13}\right) + \cos^{-1}\left(\frac{4}{5}\right) + \tan^{-1}\left(\frac{63}{16}\right) \), we will break it down step by step. ### Step 1: Define the angles Let: - \( \alpha = \sin^{-1}\left(\frac{12}{13}\right) \) - \( \beta = \cos^{-1}\left(\frac{4}{5}\right) \) - \( \gamma = \tan^{-1}\left(\frac{63}{16}\right) \) ### Step 2: Find \( \sin \alpha \) and \( \cos \beta \) From the definitions: - \( \sin \alpha = \frac{12}{13} \) - \( \cos \beta = \frac{4}{5} \) ### Step 3: Calculate \( \cos \alpha \) and \( \sin \beta \) Using the Pythagorean identity: - For \( \alpha \): \[ \cos \alpha = \sqrt{1 - \sin^2 \alpha} = \sqrt{1 - \left(\frac{12}{13}\right)^2} = \sqrt{1 - \frac{144}{169}} = \sqrt{\frac{25}{169}} = \frac{5}{13} \] - For \( \beta \): \[ \sin \beta = \sqrt{1 - \cos^2 \beta} = \sqrt{1 - \left(\frac{4}{5}\right)^2} = \sqrt{1 - \frac{16}{25}} = \sqrt{\frac{9}{25}} = \frac{3}{5} \] ### Step 4: Find \( \tan \alpha \) and \( \tan \beta \) Now, we can find: - \( \tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{\frac{12}{13}}{\frac{5}{13}} = \frac{12}{5} \) - \( \tan \beta = \frac{\sin \beta}{\cos \beta} = \frac{\frac{3}{5}}{\frac{4}{5}} = \frac{3}{4} \) ### Step 5: Use the tangent addition formula We need to find \( \tan(\alpha + \beta) \): \[ \tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} = \frac{\frac{12}{5} + \frac{3}{4}}{1 - \left(\frac{12}{5} \cdot \frac{3}{4}\right)} \] Calculating the numerator: \[ \frac{12}{5} + \frac{3}{4} = \frac{48}{20} + \frac{15}{20} = \frac{63}{20} \] Calculating the denominator: \[ 1 - \left(\frac{12 \cdot 3}{5 \cdot 4}\right) = 1 - \frac{36}{20} = \frac{20 - 36}{20} = \frac{-16}{20} = -\frac{4}{5} \] Thus: \[ \tan(\alpha + \beta) = \frac{\frac{63}{20}}{-\frac{4}{5}} = \frac{63}{20} \cdot -\frac{5}{4} = -\frac{315}{80} \] ### Step 6: Add \( \tan^{-1} \left(\frac{63}{16}\right) \) Now we need to calculate: \[ \tan(\alpha + \beta + \gamma) = \tan\left(\tan^{-1}\left(-\frac{315}{80}\right) + \tan^{-1}\left(\frac{63}{16}\right)\right) \] Using the tangent addition formula again: \[ \tan(\alpha + \beta + \gamma) = \frac{-\frac{315}{80} + \frac{63}{16}}{1 - \left(-\frac{315}{80} \cdot \frac{63}{16}\right)} \] Calculating the numerator: \[ -\frac{315}{80} + \frac{63}{16} = -\frac{315}{80} + \frac{315}{80} = 0 \] ### Final Result Thus, we have: \[ \tan(\alpha + \beta + \gamma) = 0 \] This implies: \[ \alpha + \beta + \gamma = \tan^{-1}(0) = 0 \] So the final answer is: \[ \sin^{-1}\left(\frac{12}{13}\right) + \cos^{-1}\left(\frac{4}{5}\right) + \tan^{-1}\left(\frac{63}{16}\right) = 0 \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (2)(TRUE AND FALSE)|2 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (2)(FILL IN THE BLANKS)|2 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (1)(TRUE AND FALSE)|2 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/ REASONS) |3 Videos

Similar Questions

Explore conceptually related problems

Show that sin^(-1)'5/13+cos^(-1)'3/5=tan^(-1)'63/16 .

Prove that sin^(-1). 3/5 +cos^(-1) . 12/13 = sin^(-1). 56/65

Evaluate sin^(-1) . 4/5 + sin^(-1) . 5/13 + sin^(-1) . 16/65

Let alpha=2tan^(-1)((1)/(2))+(sin^(-1)3)/(5) and beta=sin^(-1)((12)/(13))+cos^(-1)((4)/(5))+cos^(-1)((16)/(63)) be such that2sin alpha and cos beta are roots of the equation x^(2)-px+q=0, then (p-q) is

Prove that cos^(-1)(3/5) + cos^(-1) (12/13) + cos^(-1)( 63/65) =pi/2 .

sin ^ (- 1) (sin3) + cos ^ (- 1) (cos7) -tan ^ (- 1) (tan5) =

(sin ^ (- 1) 4) / (5) + (sin ^ (- 1) 5) / (13) = (tan ^ (- 1) 63) / (16)

ML KHANNA-INVERSE CIRCULAR FUNCTIONS -Problem Set (2)(MULTIPLE CHOICE QUESTIONS)
  1. Evaluate sin^(-1) . 4/5 + sin^(-1) . 5/13 + sin^(-1) . 16/65

    Text Solution

    |

  2. tan^(-1)5+tan^(-1) 3-cot^(-1) "4/7=

    Text Solution

    |

  3. sin^(-1) ""12/13 + cos^(-1)"" 4/5 tan^(-1) ""63/16=

    Text Solution

    |

  4. Prove that tan^(-1). 1/2 + tan^(-1) . 1/5 + tan^(-1). 1/8 = pi/4

    Text Solution

    |

  5. 2tan^(-1) ""1/5 + sec^(-1) ""(5sqrt2)/7 +2 tan^(-1)"1/8=

    Text Solution

    |

  6. Prove that 4 tan^(-1) . 1/5 - tan^(-1) . 1/70 + tan^(-1) . 1/99 = ...

    Text Solution

    |

  7. 4 tan^(-1)1/5-tan^(-1)1/239 is equal o

    Text Solution

    |

  8. tan^(-1) (1/5) + tan^(-1) (1/7) + tan^(-1) (1/3) + tan^(-1) (1/8) = π/...

    Text Solution

    |

  9. sin[1/2 cot^(-1)"(-3/4)] is equal to

    Text Solution

    |

  10. Find the value of tan ( 1/2 cos ^(-1) . sqrt5/3)

    Text Solution

    |

  11. tan^(-1)((1)/(4))+tan^(-1)((2)/(9)) is equal to :

    Text Solution

    |

  12. cot[cos^(-1)"7/25]=

    Text Solution

    |

  13. sin^(-1)(3/5)+tan^(-1)(1/7)=

    Text Solution

    |

  14. If alpha=sin^(-1)"" 4/5+sin^(-1) ""1/3 and beta=cos^(-1) "" 4/5+cos^(-...

    Text Solution

    |

  15. If cos^(-1)"" p/a+cos^(-1) ""q/b=alpha " then " p^2/a^2 - (2pq)/(ab) c...

    Text Solution

    |

  16. If cos^(-1)x//2+cos^(-1) y//3=theta," prove that "9x^(2)-12xy cos thet...

    Text Solution

    |

  17. If cos^(-1) x - cos^(-1). y/2= alpha ", then " 4x^(2) - 4xy cos alpha...

    Text Solution

    |

  18. The value of cot^(-1){(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt((1-sinx))-sqrt...

    Text Solution

    |

  19. If f (x) = tan ^(-1)sqrt((1 + sin x )/(1 - sin x)), 0 le x le (pi)/(2)...

    Text Solution

    |

  20. If xge1 , " then :" 2 tan^(-1)x+sin^(-1)((2x)/(1+x^(2)))=...

    Text Solution

    |