Home
Class 12
MATHS
2tan^(-1) ""1/5 + sec^(-1) ""(5sqrt2)/7 ...

`2tan^(-1) ""1/5 + sec^(-1) ""(5sqrt2)/7 +2 tan^(-1)"1/8=`

A

`pi//2`

B

`-pi//2`

C

`pi//4`

D

`-pi//4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(2\tan^{-1}\left(\frac{1}{5}\right) + \sec^{-1}\left(\frac{5\sqrt{2}}{7}\right) + 2\tan^{-1}\left(\frac{1}{8}\right)\), we can break it down step by step. ### Step 1: Combine the first and third terms We have: \[ 2\tan^{-1}\left(\frac{1}{5}\right) + 2\tan^{-1}\left(\frac{1}{8}\right) \] We can factor out the 2: \[ 2\left(\tan^{-1}\left(\frac{1}{5}\right) + \tan^{-1}\left(\frac{1}{8}\right)\right) \] ### Step 2: Use the formula for the sum of arctangents The formula for the sum of two arctangents is: \[ \tan^{-1}(x) + \tan^{-1}(y) = \tan^{-1}\left(\frac{x+y}{1-xy}\right) \] where \(x = \frac{1}{5}\) and \(y = \frac{1}{8}\). Calculating \(x + y\): \[ x + y = \frac{1}{5} + \frac{1}{8} = \frac{8 + 5}{40} = \frac{13}{40} \] Calculating \(1 - xy\): \[ xy = \frac{1}{5} \cdot \frac{1}{8} = \frac{1}{40} \] \[ 1 - xy = 1 - \frac{1}{40} = \frac{40 - 1}{40} = \frac{39}{40} \] Now, substituting these values into the formula: \[ \tan^{-1}\left(\frac{\frac{13}{40}}{\frac{39}{40}}\right) = \tan^{-1}\left(\frac{13}{39}\right) \] ### Step 3: Substitute back into the expression Now, we have: \[ 2\tan^{-1}\left(\frac{13}{39}\right) \] ### Step 4: Use the double angle formula for arctangent The double angle formula for arctangent is: \[ 2\tan^{-1}(x) = \tan^{-1}\left(\frac{2x}{1-x^2}\right) \] Let \(x = \frac{13}{39}\): \[ 2\tan^{-1}\left(\frac{13}{39}\right) = \tan^{-1}\left(\frac{2 \cdot \frac{13}{39}}{1 - \left(\frac{13}{39}\right)^2}\right) \] Calculating \(2x\): \[ 2x = \frac{26}{39} = \frac{2}{3} \] Calculating \(1 - x^2\): \[ x^2 = \left(\frac{13}{39}\right)^2 = \frac{169}{1521} \] \[ 1 - x^2 = 1 - \frac{169}{1521} = \frac{1521 - 169}{1521} = \frac{1352}{1521} \] Now we substitute these values: \[ \tan^{-1}\left(\frac{\frac{2}{3}}{\frac{1352}{1521}}\right) = \tan^{-1}\left(\frac{2 \cdot 1521}{3 \cdot 1352}\right) = \tan^{-1}\left(\frac{3042}{4056}\right) \] ### Step 5: Simplify the fraction Now we simplify \(\frac{3042}{4056}\): \[ \frac{3042 \div 2}{4056 \div 2} = \frac{1521}{2028} \] Continuing to simplify: \[ \frac{1521 \div 3}{2028 \div 3} = \frac{507}{676} \] ### Step 6: Add the second term Now, we need to add the second term \(\sec^{-1}\left(\frac{5\sqrt{2}}{7}\right)\). We will convert this to an arctangent: \[ \sec^{-1}(x) = \tan^{-1}\left(\sqrt{x^2 - 1}\right) \] Calculating: \[ \left(\frac{5\sqrt{2}}{7}\right)^2 - 1 = \frac{50}{49} - 1 = \frac{1}{49} \] Thus, \[ \sec^{-1}\left(\frac{5\sqrt{2}}{7}\right) = \tan^{-1}\left(\frac{1}{7}\right) \] ### Step 7: Combine all terms Now we have: \[ \tan^{-1}\left(\frac{507}{676}\right) + \tan^{-1}\left(\frac{1}{7}\right) \] Using the sum formula again: \[ \tan^{-1}\left(\frac{\frac{507}{676} + \frac{1}{7}}{1 - \frac{507}{676} \cdot \frac{1}{7}}\right) \] Calculating the numerator: \[ \frac{507 \cdot 7 + 676}{676 \cdot 7} = \frac{3549 + 676}{4732} = \frac{4225}{4732} \] Calculating the denominator: \[ 1 - \frac{507}{676 \cdot 7} = 1 - \frac{507}{4732} = \frac{4732 - 507}{4732} = \frac{4225}{4732} \] Thus, we have: \[ \tan^{-1}(1) = \frac{\pi}{4} \] ### Final Answer The final result is: \[ \frac{\pi}{4} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (2)(TRUE AND FALSE)|2 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (2)(FILL IN THE BLANKS)|2 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (1)(TRUE AND FALSE)|2 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/ REASONS) |3 Videos

Similar Questions

Explore conceptually related problems

Prove the following: 4tan^(-1)(1)/(5)-tan^(-1)(1)/(70)+tan^(-1)(1)/(99)=(pi)/(4)2tan^(-1)(1)/(5)+sec^(-1)(5sqrt(2))/(7)+2tan^(-1)(1)/(8)=(pi)/(4)

Prove that: 2(tan^(-1)1)/(5)+(sec^(-1)(5sqrt(2)))/(7)+2tan^(-1)(1)/(8)=(pi)/(4)

Prove that 2tan^(-1)((1)/(5))+sec^(-1)((5sqrt(2))/(7))+2tan^(-1)((1)/(8))=(pi)/(4)

Prove that 2 tan^(-1) ((1)/(8)) + tan^(-1) ((1)/(7)) + 2 tan^(-1) ((1)/(5)) = (pi)/(4)

Prove that tan^ (-1)( 1/3) +tan^(-1)( 1/5) + tan^(-1) (1/7 )+tan^(-1) (1/8) = pi/4

2tan^(-1)((1)/(5))+tan^(-1)((1)/(7))+2tan^(-1)((1)/(8))=

Prove that tan^(-1). 1/2 + tan^(-1) . 1/5 + tan^(-1). 1/8 = pi/4

tan^(-1) (1/5) + tan^(-1) (1/7) + tan^(-1) (1/3) + tan^(-1) (1/8) = π/4

ML KHANNA-INVERSE CIRCULAR FUNCTIONS -Problem Set (2)(MULTIPLE CHOICE QUESTIONS)
  1. sin^(-1) ""12/13 + cos^(-1)"" 4/5 tan^(-1) ""63/16=

    Text Solution

    |

  2. Prove that tan^(-1). 1/2 + tan^(-1) . 1/5 + tan^(-1). 1/8 = pi/4

    Text Solution

    |

  3. 2tan^(-1) ""1/5 + sec^(-1) ""(5sqrt2)/7 +2 tan^(-1)"1/8=

    Text Solution

    |

  4. Prove that 4 tan^(-1) . 1/5 - tan^(-1) . 1/70 + tan^(-1) . 1/99 = ...

    Text Solution

    |

  5. 4 tan^(-1)1/5-tan^(-1)1/239 is equal o

    Text Solution

    |

  6. tan^(-1) (1/5) + tan^(-1) (1/7) + tan^(-1) (1/3) + tan^(-1) (1/8) = π/...

    Text Solution

    |

  7. sin[1/2 cot^(-1)"(-3/4)] is equal to

    Text Solution

    |

  8. Find the value of tan ( 1/2 cos ^(-1) . sqrt5/3)

    Text Solution

    |

  9. tan^(-1)((1)/(4))+tan^(-1)((2)/(9)) is equal to :

    Text Solution

    |

  10. cot[cos^(-1)"7/25]=

    Text Solution

    |

  11. sin^(-1)(3/5)+tan^(-1)(1/7)=

    Text Solution

    |

  12. If alpha=sin^(-1)"" 4/5+sin^(-1) ""1/3 and beta=cos^(-1) "" 4/5+cos^(-...

    Text Solution

    |

  13. If cos^(-1)"" p/a+cos^(-1) ""q/b=alpha " then " p^2/a^2 - (2pq)/(ab) c...

    Text Solution

    |

  14. If cos^(-1)x//2+cos^(-1) y//3=theta," prove that "9x^(2)-12xy cos thet...

    Text Solution

    |

  15. If cos^(-1) x - cos^(-1). y/2= alpha ", then " 4x^(2) - 4xy cos alpha...

    Text Solution

    |

  16. The value of cot^(-1){(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt((1-sinx))-sqrt...

    Text Solution

    |

  17. If f (x) = tan ^(-1)sqrt((1 + sin x )/(1 - sin x)), 0 le x le (pi)/(2)...

    Text Solution

    |

  18. If xge1 , " then :" 2 tan^(-1)x+sin^(-1)((2x)/(1+x^(2)))=...

    Text Solution

    |

  19. Evaluate : tan^(-1)1+tan^(-1)2+tan^(-1)3.

    Text Solution

    |

  20. The value of sin^(-1){cot(sin^(-1)sqrt(((2-sqrt3)/4))+cos^(-1) (sqrt12...

    Text Solution

    |