Home
Class 12
MATHS
cot[cos^(-1)"7/25]=...

`cot[cos^(-1)"7/25]=`

A

`25/24`

B

`25/7`

C

`24/25`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \cot(\cos^{-1}(7/25)) \), we can follow these steps: ### Step 1: Understand the expression We start with \( \theta = \cos^{-1}(7/25) \). This means that \( \cos(\theta) = \frac{7}{25} \). ### Step 2: Draw a right triangle To visualize this, we can draw a right triangle where: - The adjacent side (base) is \( 7 \), - The hypotenuse is \( 25 \). ### Step 3: Find the opposite side We can use the Pythagorean theorem to find the opposite side: \[ \text{hypotenuse}^2 = \text{adjacent}^2 + \text{opposite}^2 \] Substituting the known values: \[ 25^2 = 7^2 + \text{opposite}^2 \] \[ 625 = 49 + \text{opposite}^2 \] \[ \text{opposite}^2 = 625 - 49 = 576 \] \[ \text{opposite} = \sqrt{576} = 24 \] ### Step 4: Calculate cotangent Now that we have the lengths of all sides of the triangle, we can find \( \cot(\theta) \): \[ \cot(\theta) = \frac{\text{adjacent}}{\text{opposite}} = \frac{7}{24} \] ### Step 5: Conclusion Thus, we have: \[ \cot(\cos^{-1}(7/25)) = \frac{7}{24} \] ### Final Answer The final answer is \( \frac{7}{24} \). ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (2)(TRUE AND FALSE)|2 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (2)(FILL IN THE BLANKS)|2 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (1)(TRUE AND FALSE)|2 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/ REASONS) |3 Videos

Similar Questions

Explore conceptually related problems

If cot [cot^(-1)((7)/(25))]=(1)/(mu), where mu in R. Then find [mu], where [*] denotes GIF

Evaluate each of the following: tan((cos^(-1)8)/(17))( ii) cot((cos^(-1)3)/(5))( iii) cos((tan^(-1)(24))/(7))

Knowledge Check

  • The value of tan[sin^(-1)(7//sqrt(50)) + cos^(-1)(1//sqrt(50)) + cot^(-1) (1//sqrt(7)) is equal to

    A
    7
    B
    `sqrt(50)`
    C
    `161//73`
    D
    `73//161`
  • Similar Questions

    Explore conceptually related problems

    Find the value of 2cos^(-1)(3)/(sqrt(13))+cot^(-1)(16)/(63)+(1)/(2)cos^(-1)(7)/(25)

    Find the value of 2 cos^(-1).(3)/(sqrt13) + cot^(-1).(16)/(63) + (1)/(2) cos^(-1).(7)/(25)

    Evaluate: cos{sin^(-1)(-(5)/(13))}( ii) cot{sin^(-1)(-(7)/(25))}

    Evaluate: (i) tan {cos^(-1)(-(7)/(25))}_( (ii) )csc{cot^(-1)(-(12)/(5))}cos{tan^(-1)(-(3)/(4))}

    Prove that cos^(-1) ((5)/(13))+cos^(-1) (-7/25)+sin^(-1) (36)/(325)=pi

    cos (2cos ^ (- 1) ((7) / (25))) =

    2cot^-1 7+cos^-1 (3/5) is equal to (A) cot^-1 (44/117) (B) cosec^-1 (125/117) (C) tan^-1 (44/117) (D) cos^-1 (44/125)