Home
Class 12
MATHS
If alpha=sin^(-1)"" 4/5+sin^(-1) ""1/3 a...

If `alpha=sin^(-1)"" 4/5+sin^(-1) ""1/3 and beta=cos^(-1) "" 4/5+cos^(-1)"" 1/3`, then

A

`alpha lt beta`

B

`alpha =beta`

C

`alpha gt beta`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expressions for \( \alpha \) and \( \beta \) and then compare them. ### Step 1: Define \( \alpha \) and \( \beta \) We start with the definitions given in the problem: \[ \alpha = \sin^{-1}\left(\frac{4}{5}\right) + \sin^{-1}\left(\frac{1}{3}\right) \] \[ \beta = \cos^{-1}\left(\frac{4}{5}\right) + \cos^{-1}\left(\frac{1}{3}\right) \] ### Step 2: Use the identity for \( \sin^{-1} \) and \( \cos^{-1} \) We can use the identity \( \sin^{-1}(x) + \cos^{-1}(x) = \frac{\pi}{2} \) to rewrite \( \alpha \): \[ \sin^{-1}\left(\frac{4}{5}\right) = \frac{\pi}{2} - \cos^{-1}\left(\frac{4}{5}\right) \] \[ \sin^{-1}\left(\frac{1}{3}\right) = \frac{\pi}{2} - \cos^{-1}\left(\frac{1}{3}\right) \] Substituting these into \( \alpha \): \[ \alpha = \left(\frac{\pi}{2} - \cos^{-1}\left(\frac{4}{5}\right)\right) + \left(\frac{\pi}{2} - \cos^{-1}\left(\frac{1}{3}\right)\right) \] \[ \alpha = \pi - \left(\cos^{-1}\left(\frac{4}{5}\right) + \cos^{-1}\left(\frac{1}{3}\right)\right) \] Thus, we can express \( \alpha \) in terms of \( \beta \): \[ \alpha = \pi - \beta \] ### Step 3: Compare \( \alpha \) and \( \beta \) From the equation \( \alpha + \beta = \pi \), we can deduce: - If \( \beta > \frac{\pi}{2} \), then \( \alpha < \frac{\pi}{2} \). - If \( \beta < \frac{\pi}{2} \), then \( \alpha > \frac{\pi}{2} \). ### Step 4: Determine the values of \( \beta \) Now we need to evaluate \( \beta \): \[ \beta = \cos^{-1}\left(\frac{4}{5}\right) + \cos^{-1}\left(\frac{1}{3}\right) \] Using the formula for \( \cos^{-1}(x) + \cos^{-1}(y) \): \[ \cos^{-1}(x) + \cos^{-1}(y) = \cos^{-1\left(xy - \sqrt{(1-x^2)(1-y^2)}\right)} \] Let \( x = \frac{4}{5} \) and \( y = \frac{1}{3} \): \[ \beta = \cos^{-1}\left(\frac{4}{5} \cdot \frac{1}{3} - \sqrt{\left(1 - \left(\frac{4}{5}\right)^2\right)\left(1 - \left(\frac{1}{3}\right)^2\right)}\right) \] Calculating \( xy \): \[ xy = \frac{4}{15} \] Calculating \( \sqrt{(1-x^2)(1-y^2)} \): \[ 1 - \left(\frac{4}{5}\right)^2 = 1 - \frac{16}{25} = \frac{9}{25} \quad \text{and} \quad 1 - \left(\frac{1}{3}\right)^2 = 1 - \frac{1}{9} = \frac{8}{9} \] Thus, \[ \sqrt{\left(1 - \left(\frac{4}{5}\right)^2\right)\left(1 - \left(\frac{1}{3}\right)^2\right)} = \sqrt{\frac{9}{25} \cdot \frac{8}{9}} = \sqrt{\frac{8}{25}} = \frac{2\sqrt{2}}{5} \] Now substituting back into the expression for \( \beta \): \[ \beta = \cos^{-1}\left(\frac{4}{15} - \frac{2\sqrt{2}}{5}\right) \] ### Step 5: Determine the sign of \( \cos(\beta) \) Since \( \beta \) is a sum of two \( \cos^{-1} \) values, we can analyze the behavior: - If \( \beta > \frac{\pi}{2} \), then \( \alpha < \frac{\pi}{2} \). ### Conclusion Since \( \alpha + \beta = \pi \), we conclude: \[ \alpha < \beta \] ### Final Result Thus, the final answer is: \[ \alpha < \beta \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (2)(TRUE AND FALSE)|2 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (2)(FILL IN THE BLANKS)|2 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (1)(TRUE AND FALSE)|2 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/ REASONS) |3 Videos

Similar Questions

Explore conceptually related problems

If alpha="sin"^(-1)("cos"("sin"^(-1)x)) and beta="cos"^(-1)("sin"("cos"^(-1)x)) , then

If alpha = sin^(-1) (cos(sin^-1) x)) and beta = cos^(-1) (sin (cos^(-1) x)) , then find tan alpha. tan beta.

If alpha = sin^(-1)(sqrt(3)/2)+sin^(-1)(1/3) , beta =cos ^(-1)(sqrt(3)/2)+cos^(-1)(1/3) then

If alpha=sin^(-1)(cos(sin^(-1)x)) and beta=cos^(-1)(sin(cos^(-1)x)) then find tan alpha.tan beta

ML KHANNA-INVERSE CIRCULAR FUNCTIONS -Problem Set (2)(MULTIPLE CHOICE QUESTIONS)
  1. tan^(-1) (1/5) + tan^(-1) (1/7) + tan^(-1) (1/3) + tan^(-1) (1/8) = π/...

    Text Solution

    |

  2. sin[1/2 cot^(-1)"(-3/4)] is equal to

    Text Solution

    |

  3. Find the value of tan ( 1/2 cos ^(-1) . sqrt5/3)

    Text Solution

    |

  4. tan^(-1)((1)/(4))+tan^(-1)((2)/(9)) is equal to :

    Text Solution

    |

  5. cot[cos^(-1)"7/25]=

    Text Solution

    |

  6. sin^(-1)(3/5)+tan^(-1)(1/7)=

    Text Solution

    |

  7. If alpha=sin^(-1)"" 4/5+sin^(-1) ""1/3 and beta=cos^(-1) "" 4/5+cos^(-...

    Text Solution

    |

  8. If cos^(-1)"" p/a+cos^(-1) ""q/b=alpha " then " p^2/a^2 - (2pq)/(ab) c...

    Text Solution

    |

  9. If cos^(-1)x//2+cos^(-1) y//3=theta," prove that "9x^(2)-12xy cos thet...

    Text Solution

    |

  10. If cos^(-1) x - cos^(-1). y/2= alpha ", then " 4x^(2) - 4xy cos alpha...

    Text Solution

    |

  11. The value of cot^(-1){(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt((1-sinx))-sqrt...

    Text Solution

    |

  12. If f (x) = tan ^(-1)sqrt((1 + sin x )/(1 - sin x)), 0 le x le (pi)/(2)...

    Text Solution

    |

  13. If xge1 , " then :" 2 tan^(-1)x+sin^(-1)((2x)/(1+x^(2)))=...

    Text Solution

    |

  14. Evaluate : tan^(-1)1+tan^(-1)2+tan^(-1)3.

    Text Solution

    |

  15. The value of sin^(-1){cot(sin^(-1)sqrt(((2-sqrt3)/4))+cos^(-1) (sqrt12...

    Text Solution

    |

  16. The number of real solutions of tan^(-1)sqrt(x(x+1))+sin^(-1)sqrt(x^2+...

    Text Solution

    |

  17. tan^-1 (1/3)+tan^-1 (1/7)+tan^-1 (1/13)+…+tan^-1(1/(1+n+n^2))+….to oo ...

    Text Solution

    |

  18. tan^(-1) ""1/3+tan^(-1)""2/9+tan^(-1)"" 4/33 +….oo is equal to

    Text Solution

    |

  19. If 2tan^(-1)(costheta)=tan^(-1)(2 cosec theta), " then " theta=

    Text Solution

    |

  20. The number of solutions of sin^(-1) x+ sin^(-1) 2x=pi/3 is

    Text Solution

    |