Home
Class 12
MATHS
If cos^(-1)"" p/a+cos^(-1) ""q/b=alpha "...

If `cos^(-1)"" p/a+cos^(-1) ""q/b=alpha " then " p^2/a^2 - (2pq)/(ab) cos alpha + q^2/b^2=`

A

`cos^2 alpha`

B

`sin^2alpha`

C

`tan^2 alpha`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation given in the question, we start with the expression: \[ \cos^{-1}\left(\frac{p}{a}\right) + \cos^{-1}\left(\frac{q}{b}\right) = \alpha \] Let us denote: \[ A = \cos^{-1}\left(\frac{p}{a}\right) \quad \text{and} \quad B = \cos^{-1}\left(\frac{q}{b}\right) \] From the definitions of \(A\) and \(B\), we have: \[ \cos A = \frac{p}{a} \quad \text{and} \quad \cos B = \frac{q}{b} \] Using the cosine addition formula, we can express \(\cos(A + B)\): \[ \cos(A + B) = \cos A \cos B - \sin A \sin B \] Substituting the values of \(\cos A\) and \(\cos B\): \[ \cos(A + B) = \left(\frac{p}{a}\right)\left(\frac{q}{b}\right) - \sin A \sin B \] Next, we need to find \(\sin A\) and \(\sin B\): \[ \sin A = \sqrt{1 - \cos^2 A} = \sqrt{1 - \left(\frac{p}{a}\right)^2} = \frac{\sqrt{a^2 - p^2}}{a} \] \[ \sin B = \sqrt{1 - \cos^2 B} = \sqrt{1 - \left(\frac{q}{b}\right)^2} = \frac{\sqrt{b^2 - q^2}}{b} \] Now substituting \(\sin A\) and \(\sin B\) back into the cosine addition formula: \[ \cos(A + B) = \frac{pq}{ab} - \left(\frac{\sqrt{a^2 - p^2}}{a}\right)\left(\frac{\sqrt{b^2 - q^2}}{b}\right) \] This simplifies to: \[ \cos \alpha = \frac{pq}{ab} - \frac{\sqrt{(a^2 - p^2)(b^2 - q^2)}}{ab} \] Now, squaring both sides to eliminate the square root: \[ \cos^2 \alpha = \left(\frac{pq}{ab} - \frac{\sqrt{(a^2 - p^2)(b^2 - q^2)}}{ab}\right)^2 \] Expanding the right-hand side: \[ \cos^2 \alpha = \left(\frac{pq}{ab}\right)^2 - 2\left(\frac{pq}{ab}\right)\left(\frac{\sqrt{(a^2 - p^2)(b^2 - q^2)}}{ab}\right) + \left(\frac{(a^2 - p^2)(b^2 - q^2)}{(ab)^2}\right) \] Now, we can rearrange the terms to find the desired expression: \[ p^2/a^2 - 2pq/(ab) \cos \alpha + q^2/b^2 = \sin^2 \alpha \] Thus, we have shown that: \[ p^2/a^2 - \frac{2pq}{ab} \cos \alpha + q^2/b^2 = \sin^2 \alpha \] ### Final Result: \[ p^2/a^2 - \frac{2pq}{ab} \cos \alpha + q^2/b^2 = \sin^2 \alpha \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (2)(TRUE AND FALSE)|2 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (2)(FILL IN THE BLANKS)|2 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (1)(TRUE AND FALSE)|2 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/ REASONS) |3 Videos

Similar Questions

Explore conceptually related problems

If cos^(-1)(x/a) + cos^(-1) (y/b) = alpha show that : (x^2)/(a^2) - (2xy)/(ab) cos alpha + (y^2)/(b^2) = sin^(2) alpha .

If cos^(-1)((p)/(a))+cos^(-1)((q)/(b))=alpha and (p^(2))/(a^(2))+k cos alpha+(q^(2))/(b^(2))=sin^(2)alpha then k=

cos^(-1)((p)/(a))+cos^(-1)((q)/(b))=alpha then (p^(2))/(a^(2))-(2pq)/(ab)+(q^(2))/(b^(2)) equals

If cos^(-1)p+cos^(-1)q+cos^(-1)r=3pi , then p^(2)+q^(2)+r^(2)+2pqr is equal to

Let cos^-1(x/a)+cos^-1(y/b)=alpha thenAnswer the following questions (A) x^2/a^2+y^2/b^2+(2xy)/(ab) cos alpha = sin^2 alpha (B) x^2/a^2-y^2/b^2+(2xy)/(ab) cos alpha = sin^2 alpha (C) x^2/a^2+y^2/b^2-(2xy)/(ab) cos alpha = sin^2 alpha (D) x^2/a^2-y^2/b^2-(2xy)/(ab) cos alpha = sin^2 alpha

If (sin alpha)/(a)=(cos alpha)/(b), then a sin2 alpha+b cos2 alpha=

tan^(2)alpha=1-p^(2) then sec alpha+tan^(3)alpha*cos ec alpha

If (x) / (a) cos alpha + (y) / (b) sin alpha = 1, (x) / (a) cos beta + (y) / (b) sin beta = 1 and (cos alpha cos beta) / (a ^ (2)) + (without alpha without beta) / (b ^ (2)) = 0 then

ML KHANNA-INVERSE CIRCULAR FUNCTIONS -Problem Set (2)(MULTIPLE CHOICE QUESTIONS)
  1. tan^(-1) (1/5) + tan^(-1) (1/7) + tan^(-1) (1/3) + tan^(-1) (1/8) = π/...

    Text Solution

    |

  2. sin[1/2 cot^(-1)"(-3/4)] is equal to

    Text Solution

    |

  3. Find the value of tan ( 1/2 cos ^(-1) . sqrt5/3)

    Text Solution

    |

  4. tan^(-1)((1)/(4))+tan^(-1)((2)/(9)) is equal to :

    Text Solution

    |

  5. cot[cos^(-1)"7/25]=

    Text Solution

    |

  6. sin^(-1)(3/5)+tan^(-1)(1/7)=

    Text Solution

    |

  7. If alpha=sin^(-1)"" 4/5+sin^(-1) ""1/3 and beta=cos^(-1) "" 4/5+cos^(-...

    Text Solution

    |

  8. If cos^(-1)"" p/a+cos^(-1) ""q/b=alpha " then " p^2/a^2 - (2pq)/(ab) c...

    Text Solution

    |

  9. If cos^(-1)x//2+cos^(-1) y//3=theta," prove that "9x^(2)-12xy cos thet...

    Text Solution

    |

  10. If cos^(-1) x - cos^(-1). y/2= alpha ", then " 4x^(2) - 4xy cos alpha...

    Text Solution

    |

  11. The value of cot^(-1){(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt((1-sinx))-sqrt...

    Text Solution

    |

  12. If f (x) = tan ^(-1)sqrt((1 + sin x )/(1 - sin x)), 0 le x le (pi)/(2)...

    Text Solution

    |

  13. If xge1 , " then :" 2 tan^(-1)x+sin^(-1)((2x)/(1+x^(2)))=...

    Text Solution

    |

  14. Evaluate : tan^(-1)1+tan^(-1)2+tan^(-1)3.

    Text Solution

    |

  15. The value of sin^(-1){cot(sin^(-1)sqrt(((2-sqrt3)/4))+cos^(-1) (sqrt12...

    Text Solution

    |

  16. The number of real solutions of tan^(-1)sqrt(x(x+1))+sin^(-1)sqrt(x^2+...

    Text Solution

    |

  17. tan^-1 (1/3)+tan^-1 (1/7)+tan^-1 (1/13)+…+tan^-1(1/(1+n+n^2))+….to oo ...

    Text Solution

    |

  18. tan^(-1) ""1/3+tan^(-1)""2/9+tan^(-1)"" 4/33 +….oo is equal to

    Text Solution

    |

  19. If 2tan^(-1)(costheta)=tan^(-1)(2 cosec theta), " then " theta=

    Text Solution

    |

  20. The number of solutions of sin^(-1) x+ sin^(-1) 2x=pi/3 is

    Text Solution

    |