Home
Class 12
MATHS
The value of cot^(-1){(sqrt(1-sinx)+sqrt...

The value of `cot^(-1){(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt((1-sinx))-sqrt((1+sin x)))} " is " (0 lt x lt 2pi)`

A

`pi - x/2`

B

`2pi-x`

C

`x/2`

D

`2pi-x/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \cot^{-1} \left( \frac{\sqrt{1 - \sin x} + \sqrt{1 + \sin x}}{\sqrt{1 - \sin x} - \sqrt{1 + \sin x}} \right) \) for \( 0 < x < 2\pi \), we will follow these steps: ### Step 1: Rationalize the Expression We start by rationalizing the denominator of the expression inside the cotangent inverse. We multiply the numerator and denominator by the conjugate of the denominator: \[ \text{Let } A = \sqrt{1 - \sin x} \quad \text{and} \quad B = \sqrt{1 + \sin x} \] So, we have: \[ \cot^{-1} \left( \frac{A + B}{A - B} \cdot \frac{A + B}{A + B} \right) = \cot^{-1} \left( \frac{(A + B)^2}{A^2 - B^2} \right) \] ### Step 2: Expand the Numerator Now we expand the numerator: \[ (A + B)^2 = A^2 + 2AB + B^2 \] Substituting \( A^2 = 1 - \sin x \) and \( B^2 = 1 + \sin x \): \[ A^2 + B^2 = (1 - \sin x) + (1 + \sin x) = 2 \] Now, we find \( 2AB \): \[ 2AB = 2\sqrt{(1 - \sin x)(1 + \sin x)} = 2\sqrt{1 - \sin^2 x} = 2\cos x \] Thus, the numerator becomes: \[ (A + B)^2 = 2 + 2\cos x = 2(1 + \cos x) \] ### Step 3: Simplify the Denominator Next, we simplify the denominator: \[ A^2 - B^2 = (1 - \sin x) - (1 + \sin x) = -2\sin x \] ### Step 4: Substitute Back Now we substitute back into the cotangent inverse: \[ \cot^{-1} \left( \frac{2(1 + \cos x)}{-2\sin x} \right) = \cot^{-1} \left( \frac{1 + \cos x}{-\sin x} \right) \] ### Step 5: Use Cotangent Identity Using the identity \( \cot^{-1}(-y) = \pi - \cot^{-1}(y) \): \[ \cot^{-1} \left( \frac{1 + \cos x}{-\sin x} \right) = \pi - \cot^{-1} \left( \frac{1 + \cos x}{\sin x} \right) \] ### Step 6: Simplify Further Now we can express \( \frac{1 + \cos x}{\sin x} \) in terms of tangent: \[ \frac{1 + \cos x}{\sin x} = \frac{2\cos^2(x/2)}{2\sin(x/2)\cos(x/2)} = \cot(x/2) \] Thus, we have: \[ \cot^{-1} \left( \frac{1 + \cos x}{\sin x} \right) = \cot^{-1}(\cot(x/2)) = \frac{x}{2} \] ### Step 7: Final Result Putting it all together, we get: \[ \cot^{-1} \left( \frac{1 + \cos x}{-\sin x} \right) = \pi - \frac{x}{2} \] Thus, the final answer is: \[ \cot^{-1} \left( \frac{\sqrt{1 - \sin x} + \sqrt{1 + \sin x}}{\sqrt{1 - \sin x} - \sqrt{1 + \sin x}} \right) = \pi - \frac{x}{2} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (2)(TRUE AND FALSE)|2 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (2)(FILL IN THE BLANKS)|2 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (1)(TRUE AND FALSE)|2 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/ REASONS) |3 Videos

Similar Questions

Explore conceptually related problems

The value of cot^(-1){(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx) -sqrt(1+sinx))} is (0 lt x lt (pi)/(2))

The value of tan^(-1){(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx)-sqrt(1+sinx))} is : ((pi)/(2) lt x lt pi)

Find the value of cot^(-1)[(sqrt(1-sin x)+sqrt(1+sin x))/(sqrt(1-sin x)-sqrt(1+sin x))]

The value of cot^(-1){(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx)-sqrt(1+sinx))} , where (pi)/2ltxltpi , is

value of int_0^1cot^-1((sqrt(1+sinx)+(sqrt(1-sinx)))/((sqrt(1+sinx)-(sqrt(1-sinx)))))dx

The value of tan^(-1)[(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx)-sqrt(1+sinx))](AA x in [0, (pi)/(2)]) is equal to

Find (dy)/(dx) of y=cot^(-1)[(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))]

cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=(x)/(2), x in (0,(pi)/(4))

ML KHANNA-INVERSE CIRCULAR FUNCTIONS -Problem Set (2)(MULTIPLE CHOICE QUESTIONS)
  1. tan^(-1) (1/5) + tan^(-1) (1/7) + tan^(-1) (1/3) + tan^(-1) (1/8) = π/...

    Text Solution

    |

  2. sin[1/2 cot^(-1)"(-3/4)] is equal to

    Text Solution

    |

  3. Find the value of tan ( 1/2 cos ^(-1) . sqrt5/3)

    Text Solution

    |

  4. tan^(-1)((1)/(4))+tan^(-1)((2)/(9)) is equal to :

    Text Solution

    |

  5. cot[cos^(-1)"7/25]=

    Text Solution

    |

  6. sin^(-1)(3/5)+tan^(-1)(1/7)=

    Text Solution

    |

  7. If alpha=sin^(-1)"" 4/5+sin^(-1) ""1/3 and beta=cos^(-1) "" 4/5+cos^(-...

    Text Solution

    |

  8. If cos^(-1)"" p/a+cos^(-1) ""q/b=alpha " then " p^2/a^2 - (2pq)/(ab) c...

    Text Solution

    |

  9. If cos^(-1)x//2+cos^(-1) y//3=theta," prove that "9x^(2)-12xy cos thet...

    Text Solution

    |

  10. If cos^(-1) x - cos^(-1). y/2= alpha ", then " 4x^(2) - 4xy cos alpha...

    Text Solution

    |

  11. The value of cot^(-1){(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt((1-sinx))-sqrt...

    Text Solution

    |

  12. If f (x) = tan ^(-1)sqrt((1 + sin x )/(1 - sin x)), 0 le x le (pi)/(2)...

    Text Solution

    |

  13. If xge1 , " then :" 2 tan^(-1)x+sin^(-1)((2x)/(1+x^(2)))=...

    Text Solution

    |

  14. Evaluate : tan^(-1)1+tan^(-1)2+tan^(-1)3.

    Text Solution

    |

  15. The value of sin^(-1){cot(sin^(-1)sqrt(((2-sqrt3)/4))+cos^(-1) (sqrt12...

    Text Solution

    |

  16. The number of real solutions of tan^(-1)sqrt(x(x+1))+sin^(-1)sqrt(x^2+...

    Text Solution

    |

  17. tan^-1 (1/3)+tan^-1 (1/7)+tan^-1 (1/13)+…+tan^-1(1/(1+n+n^2))+….to oo ...

    Text Solution

    |

  18. tan^(-1) ""1/3+tan^(-1)""2/9+tan^(-1)"" 4/33 +….oo is equal to

    Text Solution

    |

  19. If 2tan^(-1)(costheta)=tan^(-1)(2 cosec theta), " then " theta=

    Text Solution

    |

  20. The number of solutions of sin^(-1) x+ sin^(-1) 2x=pi/3 is

    Text Solution

    |