Home
Class 12
MATHS
The number of solutions of sin^(-1) x+ s...

The number of solutions of `sin^(-1) x+ sin^(-1) 2x=pi/3` is

A

0

B

1

C

2

D

infinite

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin^{-1} x + \sin^{-1} 2x = \frac{\pi}{3} \), we will follow these steps: ### Step 1: Rewrite the Equation We start with the equation: \[ \sin^{-1} x + \sin^{-1} 2x = \frac{\pi}{3} \] We can rewrite this as: \[ \sin^{-1} 2x = \frac{\pi}{3} - \sin^{-1} x \] ### Step 2: Apply the Sine Function Taking the sine of both sides, we have: \[ 2x = \sin\left(\frac{\pi}{3} - \sin^{-1} x\right) \] ### Step 3: Use the Sine Subtraction Formula Using the sine subtraction formula, we can express the right-hand side: \[ \sin\left(\frac{\pi}{3} - \sin^{-1} x\right) = \sin\frac{\pi}{3} \cos(\sin^{-1} x) - \cos\frac{\pi}{3} \sin(\sin^{-1} x) \] We know that \( \sin\frac{\pi}{3} = \frac{\sqrt{3}}{2} \) and \( \cos\frac{\pi}{3} = \frac{1}{2} \). Also, \( \sin(\sin^{-1} x) = x \) and \( \cos(\sin^{-1} x) = \sqrt{1 - x^2} \). Therefore, we have: \[ 2x = \frac{\sqrt{3}}{2} \sqrt{1 - x^2} - \frac{1}{2} x \] ### Step 4: Rearranging the Equation Rearranging gives: \[ 2x + \frac{1}{2} x = \frac{\sqrt{3}}{2} \sqrt{1 - x^2} \] This simplifies to: \[ \frac{5}{2} x = \frac{\sqrt{3}}{2} \sqrt{1 - x^2} \] ### Step 5: Squaring Both Sides Squaring both sides to eliminate the square root: \[ \left(\frac{5}{2} x\right)^2 = \left(\frac{\sqrt{3}}{2} \sqrt{1 - x^2}\right)^2 \] This leads to: \[ \frac{25}{4} x^2 = \frac{3}{4} (1 - x^2) \] ### Step 6: Simplifying the Equation Multiplying through by 4 to eliminate the denominators: \[ 25x^2 = 3(1 - x^2) \] Expanding gives: \[ 25x^2 = 3 - 3x^2 \] Combining like terms results in: \[ 28x^2 = 3 \] ### Step 7: Solving for x Dividing both sides by 28: \[ x^2 = \frac{3}{28} \] Taking the square root gives: \[ x = \pm \sqrt{\frac{3}{28}} = \pm \frac{\sqrt{3}}{2\sqrt{7}} = \pm \frac{\sqrt{3}}{2\sqrt{4 \cdot 7}} = \pm \frac{\sqrt{3}}{2 \cdot 2\sqrt{7}} = \pm \frac{\sqrt{3}}{4\sqrt{7}} \] ### Step 8: Validating the Solutions Since \( \sin^{-1} x \) and \( \sin^{-1} 2x \) are defined only for \( x \) in the interval \([-1, 1]\), we need to check which of these values are valid. The positive value will be valid, while the negative value will not yield a valid solution since both \( \sin^{-1} x \) and \( \sin^{-1} 2x \) would yield negative results, which cannot sum to a positive angle like \( \frac{\pi}{3} \). ### Conclusion Thus, the number of solutions to the equation \( \sin^{-1} x + \sin^{-1} 2x = \frac{\pi}{3} \) is: \[ \text{Number of solutions} = 1 \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (2)(TRUE AND FALSE)|2 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (2)(FILL IN THE BLANKS)|2 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (1)(TRUE AND FALSE)|2 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/ REASONS) |3 Videos

Similar Questions

Explore conceptually related problems

The solution of sin^(-1)x-sin^(-1)2x=pm(pi)/(3) is

Solve: sin^(-1)x + sin^(-1)2x = pi/3 .

If a le 1/32 then the number of solution of (sin^(-1) x)^(3) +(cos^(-1) x)^(3) = a pi^(3) is

Solve sin^(-1)x + sin^(-1) 2x = (pi)/(3)

Solve sin^(-1)x+sin^(-1)2x=(pi)/(3)

Find the number of solutions of sin^(2)x-sin x-1=0 in [-2 pi,2 pi]

find the number of solution of sin^(2) x-sin x-1=0 in [-2pi, 2pi] .

The number of solutions of sin x+ sin 3x + sin 5x=0 in the interval [(pi)/(2).(3pi)/(2)] is

ML KHANNA-INVERSE CIRCULAR FUNCTIONS -Problem Set (2)(MULTIPLE CHOICE QUESTIONS)
  1. tan^(-1) (1/5) + tan^(-1) (1/7) + tan^(-1) (1/3) + tan^(-1) (1/8) = π/...

    Text Solution

    |

  2. sin[1/2 cot^(-1)"(-3/4)] is equal to

    Text Solution

    |

  3. Find the value of tan ( 1/2 cos ^(-1) . sqrt5/3)

    Text Solution

    |

  4. tan^(-1)((1)/(4))+tan^(-1)((2)/(9)) is equal to :

    Text Solution

    |

  5. cot[cos^(-1)"7/25]=

    Text Solution

    |

  6. sin^(-1)(3/5)+tan^(-1)(1/7)=

    Text Solution

    |

  7. If alpha=sin^(-1)"" 4/5+sin^(-1) ""1/3 and beta=cos^(-1) "" 4/5+cos^(-...

    Text Solution

    |

  8. If cos^(-1)"" p/a+cos^(-1) ""q/b=alpha " then " p^2/a^2 - (2pq)/(ab) c...

    Text Solution

    |

  9. If cos^(-1)x//2+cos^(-1) y//3=theta," prove that "9x^(2)-12xy cos thet...

    Text Solution

    |

  10. If cos^(-1) x - cos^(-1). y/2= alpha ", then " 4x^(2) - 4xy cos alpha...

    Text Solution

    |

  11. The value of cot^(-1){(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt((1-sinx))-sqrt...

    Text Solution

    |

  12. If f (x) = tan ^(-1)sqrt((1 + sin x )/(1 - sin x)), 0 le x le (pi)/(2)...

    Text Solution

    |

  13. If xge1 , " then :" 2 tan^(-1)x+sin^(-1)((2x)/(1+x^(2)))=...

    Text Solution

    |

  14. Evaluate : tan^(-1)1+tan^(-1)2+tan^(-1)3.

    Text Solution

    |

  15. The value of sin^(-1){cot(sin^(-1)sqrt(((2-sqrt3)/4))+cos^(-1) (sqrt12...

    Text Solution

    |

  16. The number of real solutions of tan^(-1)sqrt(x(x+1))+sin^(-1)sqrt(x^2+...

    Text Solution

    |

  17. tan^-1 (1/3)+tan^-1 (1/7)+tan^-1 (1/13)+…+tan^-1(1/(1+n+n^2))+….to oo ...

    Text Solution

    |

  18. tan^(-1) ""1/3+tan^(-1)""2/9+tan^(-1)"" 4/33 +….oo is equal to

    Text Solution

    |

  19. If 2tan^(-1)(costheta)=tan^(-1)(2 cosec theta), " then " theta=

    Text Solution

    |

  20. The number of solutions of sin^(-1) x+ sin^(-1) 2x=pi/3 is

    Text Solution

    |