Home
Class 12
MATHS
cos(2cos^(-1)x+sin^(-1)x) " at " x =1/5 ...

`cos(2cos^(-1)x+sin^(-1)x) " at " x =1/5` is equal to……….. Where `0 le cos^(-1) x le pi and -pi/2 le sin^(-1) x le pi/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \cos(2 \cos^{-1} x + \sin^{-1} x) \) at \( x = \frac{1}{5} \), we will follow these steps: ### Step 1: Substitute \( x \) We start by substituting \( x = \frac{1}{5} \) into the expression: \[ \cos(2 \cos^{-1}(\frac{1}{5}) + \sin^{-1}(\frac{1}{5})) \] ### Step 2: Define \( \alpha \) Let \( \alpha = \cos^{-1}(\frac{1}{5}) \). Then we have: \[ \cos(2\alpha + \sin^{-1}(\frac{1}{5})) \] ### Step 3: Use the identity for \( \cos(2\alpha) \) Using the double angle identity, we can express \( \cos(2\alpha) \) as: \[ \cos(2\alpha) = 2 \cos^2(\alpha) - 1 \] Since \( \cos(\alpha) = \frac{1}{5} \), we find: \[ \cos^2(\alpha) = \left(\frac{1}{5}\right)^2 = \frac{1}{25} \] Thus, \[ \cos(2\alpha) = 2 \cdot \frac{1}{25} - 1 = \frac{2}{25} - 1 = \frac{2 - 25}{25} = \frac{-23}{25} \] ### Step 4: Find \( \sin(\alpha) \) Next, we need to find \( \sin(\alpha) \). Using the Pythagorean identity: \[ \sin^2(\alpha) + \cos^2(\alpha) = 1 \] we have: \[ \sin^2(\alpha) = 1 - \cos^2(\alpha) = 1 - \frac{1}{25} = \frac{24}{25} \] Thus, \[ \sin(\alpha) = \sqrt{\frac{24}{25}} = \frac{\sqrt{24}}{5} = \frac{2\sqrt{6}}{5} \] ### Step 5: Use the identity for \( \cos(2\alpha + \beta) \) Now we can use the cosine addition formula: \[ \cos(2\alpha + \sin^{-1}(\frac{1}{5})) = \cos(2\alpha) \cos(\sin^{-1}(\frac{1}{5})) - \sin(2\alpha) \sin(\sin^{-1}(\frac{1}{5})) \] ### Step 6: Find \( \cos(\sin^{-1}(\frac{1}{5})) \) From the definition of sine and cosine: \[ \sin(\beta) = \frac{1}{5} \implies \cos(\beta) = \sqrt{1 - \sin^2(\beta)} = \sqrt{1 - \left(\frac{1}{5}\right)^2} = \sqrt{1 - \frac{1}{25}} = \sqrt{\frac{24}{25}} = \frac{2\sqrt{6}}{5} \] ### Step 7: Find \( \sin(2\alpha) \) Using the double angle formula for sine: \[ \sin(2\alpha) = 2 \sin(\alpha) \cos(\alpha) = 2 \cdot \frac{2\sqrt{6}}{5} \cdot \frac{1}{5} = \frac{4\sqrt{6}}{25} \] ### Step 8: Substitute back into the cosine formula Now substituting everything back: \[ \cos(2\alpha + \sin^{-1}(\frac{1}{5})) = \frac{-23}{25} \cdot \frac{2\sqrt{6}}{5} - \frac{4\sqrt{6}}{25} \cdot \frac{1}{5} \] Calculating this gives: \[ = \frac{-46\sqrt{6}}{125} - \frac{4\sqrt{6}}{125} = \frac{-50\sqrt{6}}{125} = \frac{-2\sqrt{6}}{5} \] ### Final Answer Thus, the final answer is: \[ \cos(2 \cos^{-1}(\frac{1}{5}) + \sin^{-1}(\frac{1}{5})) = \frac{-2\sqrt{6}}{5} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (3)(MULTIPLE CHOICE QUESTIONS)|36 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (3)(TRUE AND FALSE)|3 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (2)(TRUE AND FALSE)|2 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/ REASONS) |3 Videos

Similar Questions

Explore conceptually related problems

Solve 2 cos^(2) x+ sin x le 2 , where pi//2 le x le 3pi//2 .

If 0 le x le 2pi and |cos x | le sin x , the

If pi le x le (3pi)/(2) then sin pi le sinx le sin(3pi)/(2)

If cos ^(-1) x - cos ^(-1) ""( y )/(2) = alpha , where -1 le x le 1, -2 le y le 2, x le (y)/(2) , then for all x,y, 4x^(2) - 4xy cos alpha + y^(2) is equal to

If -1 le x le 0 then cos^(-1)(2x^(2)-1) equals

If -1 le x le 0 then cos^(-1)(2x^(2)-1) equals

If 0 le x le 1 then cos^(-1)(2x^(2)-1) equals