Home
Class 12
MATHS
If tan^(-1)"" (x-1)/(x+1)+tan^(-1) ""(2x...

If `tan^(-1)"" (x-1)/(x+1)+tan^(-1) ""(2x-1)/(2x+1)=tan^(-1) "" 23/36 , " then " x =`

A

`4//3`

B

`-3//8`

C

`2//7`

D

`1//6`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \tan^{-1}\left(\frac{x-1}{x+1}\right) + \tan^{-1}\left(\frac{2x-1}{2x+1}\right) = \tan^{-1}\left(\frac{23}{36}\right), \] we can use the formula for the sum of inverse tangents: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a+b}{1-ab}\right) \] provided that \(ab < 1\). ### Step 1: Identify \(a\) and \(b\) Here, we have: \[ a = \frac{x-1}{x+1}, \quad b = \frac{2x-1}{2x+1} \] ### Step 2: Apply the formula Using the formula, we can rewrite the left-hand side: \[ \tan^{-1}\left(\frac{a+b}{1-ab}\right) = \tan^{-1}\left(\frac{\frac{x-1}{x+1} + \frac{2x-1}{2x+1}}{1 - \left(\frac{x-1}{x+1}\right)\left(\frac{2x-1}{2x+1}\right)}\right) \] ### Step 3: Find \(a + b\) Calculating \(a + b\): \[ a + b = \frac{x-1}{x+1} + \frac{2x-1}{2x+1} \] To add these fractions, we find a common denominator: \[ = \frac{(x-1)(2x+1) + (2x-1)(x+1)}{(x+1)(2x+1)} \] Expanding the numerator: \[ = \frac{(2x^2 + x - 2x - 1) + (2x^2 + 2x - x - 1)}{(x+1)(2x+1)} \] \[ = \frac{4x^2 + 2x - 2}{(x+1)(2x+1)} \] ### Step 4: Find \(1 - ab\) Now calculate \(ab\): \[ ab = \left(\frac{x-1}{x+1}\right)\left(\frac{2x-1}{2x+1}\right) = \frac{(x-1)(2x-1)}{(x+1)(2x+1)} \] Expanding: \[ = \frac{2x^2 - x - 2x + 1}{(x+1)(2x+1)} = \frac{2x^2 - 3x + 1}{(x+1)(2x+1)} \] Thus, \[ 1 - ab = 1 - \frac{2x^2 - 3x + 1}{(x+1)(2x+1)} = \frac{(x+1)(2x+1) - (2x^2 - 3x + 1)}{(x+1)(2x+1)} \] Expanding the numerator: \[ = \frac{2x^2 + 3x + 1 - (2x^2 - 3x + 1)}{(x+1)(2x+1)} = \frac{6x}{(x+1)(2x+1)} \] ### Step 5: Combine \(a + b\) and \(1 - ab\) Now substituting back into the formula: \[ \tan^{-1}\left(\frac{\frac{4x^2 + 2x - 2}{(x+1)(2x+1)}}{\frac{6x}{(x+1)(2x+1)}}\right) = \tan^{-1}\left(\frac{4x^2 + 2x - 2}{6x}\right) \] Setting this equal to \(\tan^{-1}\left(\frac{23}{36}\right)\), we have: \[ \frac{4x^2 + 2x - 2}{6x} = \frac{23}{36} \] ### Step 6: Cross-multiply Cross-multiplying gives: \[ 36(4x^2 + 2x - 2) = 138x \] Expanding: \[ 144x^2 + 72x - 72 = 138x \] ### Step 7: Rearranging the equation Rearranging gives: \[ 144x^2 + 72x - 138x - 72 = 0 \] \[ 144x^2 - 66x - 72 = 0 \] ### Step 8: Simplifying Dividing the whole equation by 6: \[ 24x^2 - 11x - 12 = 0 \] ### Step 9: Factoring or using the quadratic formula Using the quadratic formula \(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\): Here, \(a = 24\), \(b = -11\), \(c = -12\): \[ x = \frac{11 \pm \sqrt{(-11)^2 - 4 \cdot 24 \cdot (-12)}}{2 \cdot 24} \] \[ = \frac{11 \pm \sqrt{121 + 1152}}{48} \] \[ = \frac{11 \pm \sqrt{1273}}{48} \] ### Step 10: Finding the values of \(x\) Calculating the roots gives two possible values for \(x\). ### Final Answer The two values of \(x\) are: \[ x = \frac{4}{3} \quad \text{and} \quad x = -\frac{3}{8} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (3)(TRUE AND FALSE)|3 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (3)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (2)(FILL IN THE BLANKS)|2 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/ REASONS) |3 Videos

Similar Questions

Explore conceptually related problems

Solve: tan^(-1)((x-1)/(x+1))+tan^(-1)((2x-1)/(2x+1))=tan^(-1)((23)/(36))

Solve tan^(-1) ((x+1)/(x-1)) + tan^(-1) ((x-1)/x) = tan^(-1)(-7)

If tan^(-1)((x+1)/(x-1))+tan^(-1)((x-1)/(x))=tan^(-1)(-7)+pi then x =

The root of the equation tan^(-1)((x-1)/(x+1))+tan^(-1)((2x-1)/(2x+1))=tan^(-1)((23)/(36)) is

ML KHANNA-INVERSE CIRCULAR FUNCTIONS -Problem Set (3)(MULTIPLE CHOICE QUESTIONS)
  1. If: sin(sin^(-1)1/5 + cos^(-1)x)=1, then: x=

    Text Solution

    |

  2. If tan^(-1)""(x-1)/(x-2)+tan^(-1)"" (x+1)/(x+2)=pi/4, " then " x=

    Text Solution

    |

  3. If tan^(-1)"" (x-1)/(x+1)+tan^(-1) ""(2x-1)/(2x+1)=tan^(-1) "" 23/36 ,...

    Text Solution

    |

  4. If 3sin^(-1)((2x)/(1+x^2))-4cos^(-1)((1-x^2)/(1+x^2))+2tan^(-1)((2x)/(...

    Text Solution

    |

  5. If cos^(-1)"" 3/5 - sin^(-1) ""4/5 = cos^(-1) x, " then " x=

    Text Solution

    |

  6. If sin^(-1) ""3/5+sin^(-1)""5/13=sin^(-1)x, " then " x=

    Text Solution

    |

  7. If cot^(-1) x+ sin^(-1)""1/sqrt5 = pi/4 , " then " x=

    Text Solution

    |

  8. If tan^(-1) x+tan^(-1) ""1/2 = pi/4 , " then " x=

    Text Solution

    |

  9. tan^(-1) 2x+tan^(-1) 3x=npi+(3pi)/4 , " then " x=

    Text Solution

    |

  10. sec^(-1)"" x/a-sec^(-1)"" x/b=sec^(-1) b-sec^(-1) a, " then " x=

    Text Solution

    |

  11. If tan^(-1)(a/x) + tan^(-1)(b/x) = pi/2, then: x=……

    Text Solution

    |

  12. If sin^(-1) ((2a)/(1+a^(2)))-cos^(-1)((1-b^(2))/(1+b^(2))) = tan ^(-1)...

    Text Solution

    |

  13. If sin^(-1)"" x/5 + cosec^(-1)"" 5/4 = pi/2 " then " x=

    Text Solution

    |

  14. If cos(2sin^(-1)x)=1/9 , " then " x=

    Text Solution

    |

  15. A solution of the equation tan^(-1)(1+x)+tan^(-1)(1-x)=(pi)/(2) is

    Text Solution

    |

  16. If sin^(-1)(x-x^2/2+x^3/4…..oo)+cos^(-1)(x^2-x^4/2+x^6/4-……oo)=pi/2 th...

    Text Solution

    |

  17. If cos^(-1)x gt sin^(-1) x, then

    Text Solution

    |

  18. If x^2+y^2+z^2=r^2, " then " tan^(-1) ""(xy)/(zr)+tan^(-1) ""(yz)/(xr)...

    Text Solution

    |

  19. If x+y+z=xyz, then tan^(-1)x+tan^(-1)y+tan^(-1)z=

    Text Solution

    |

  20. If xy +yz+zx=1 then tan^(-1)x+tan^(-1)y+tan^(-1)z=

    Text Solution

    |