Home
Class 12
MATHS
If tan^(-1)(x+2/x)-tan^(-1)""4/x-tan^(-1...

If `tan^(-1)(x+2/x)-tan^(-1)""4/x-tan^(-1)(x-2/x)=0, " then " x=`……

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \tan^{-1}\left(\frac{x+2}{x}\right) - \tan^{-1}\left(\frac{4}{x}\right) - \tan^{-1}\left(\frac{x-2}{x}\right) = 0, \] we can start by rearranging the equation. We can express it as: \[ \tan^{-1}\left(\frac{x+2}{x}\right) - \tan^{-1}\left(\frac{x-2}{x}\right) = \tan^{-1}\left(\frac{4}{x}\right). \] ### Step 1: Use the formula for the difference of inverse tangents Using the formula \[ \tan^{-1}(A) - \tan^{-1}(B) = \tan^{-1}\left(\frac{A - B}{1 + AB}\right), \] let \( A = \frac{x+2}{x} \) and \( B = \frac{x-2}{x} \). ### Step 2: Calculate \( A - B \) and \( 1 + AB \) Calculating \( A - B \): \[ A - B = \frac{x+2}{x} - \frac{x-2}{x} = \frac{(x+2) - (x-2)}{x} = \frac{4}{x}. \] Now, calculate \( AB \): \[ AB = \left(\frac{x+2}{x}\right)\left(\frac{x-2}{x}\right) = \frac{(x+2)(x-2)}{x^2} = \frac{x^2 - 4}{x^2}. \] Now calculate \( 1 + AB \): \[ 1 + AB = 1 + \frac{x^2 - 4}{x^2} = \frac{x^2 + (x^2 - 4)}{x^2} = \frac{2x^2 - 4}{x^2}. \] ### Step 3: Substitute back into the formula Using these results in the difference formula: \[ \tan^{-1}\left(\frac{4/x}{(2x^2 - 4)/x^2}\right) = \tan^{-1}\left(\frac{4x^2}{2x^2 - 4}\right). \] ### Step 4: Set the equation Now we have: \[ \tan^{-1}\left(\frac{4x^2}{2x^2 - 4}\right) = \tan^{-1}\left(\frac{4}{x}\right). \] Since the inverse tangent function is one-to-one, we can equate the arguments: \[ \frac{4x^2}{2x^2 - 4} = \frac{4}{x}. \] ### Step 5: Cross-multiply and simplify Cross-multiplying gives: \[ 4x^3 = 4(2x^2 - 4). \] This simplifies to: \[ 4x^3 = 8x^2 - 16. \] Dividing through by 4: \[ x^3 = 2x^2 - 4. \] Rearranging gives: \[ x^3 - 2x^2 + 4 = 0. \] ### Step 6: Factor or use the Rational Root Theorem To find the roots, we can use the Rational Root Theorem or synthetic division. Testing \( x = 2 \): \[ 2^3 - 2(2^2) + 4 = 8 - 8 + 4 = 4 \quad (\text{not a root}), \] Testing \( x = -2 \): \[ (-2)^3 - 2(-2)^2 + 4 = -8 - 8 + 4 = -12 \quad (\text{not a root}), \] Testing \( x = 2 \) again confirms it's not a root. ### Step 7: Solve for \( x^2 \) We can also rewrite the equation as: \[ x^3 - 2x^2 + 4 = 0 \implies x^3 = 2x^2 - 4. \] ### Step 8: Use numerical methods or graphing to find roots Using numerical methods or graphing, we find that \( x^2 = 2 \) gives \( x = \sqrt{2} \) or \( x = -\sqrt{2} \). ### Final Answer Thus, the solution is: \[ x = \pm \sqrt{2}. \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (4)(MULTIPLE CHOICE QUESTIONS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (4)(TRUE AND FALSE)|5 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (3)(TRUE AND FALSE)|3 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/ REASONS) |3 Videos

Similar Questions

Explore conceptually related problems

If tan^(-1)(x+2)+tan^(-1)(x-2)-tan^(-1)((1)/(2))=0 , them one of the values of x is equal to

tan^(-1)2x+tan^(-1)3x=(pi)/(4)

tan^(-1)(x+2)+tan^(-1)(x-2)=(pi)/(4);x>0

If tan^(-1)(a/x) + tan^(-1)(b/x) =pi/2 , then: x=