Home
Class 12
MATHS
If cos^(-1)"" 3/5 - sin^(-1) ""4/5 = cos...

If `cos^(-1)"" 3/5 - sin^(-1) ""4/5 = cos^(-1) x, " then " x=`

A

0

B

1

C

`1/2`

D

`1/4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos^{-1} \left( \frac{3}{5} \right) - \sin^{-1} \left( \frac{4}{5} \right) = \cos^{-1} x \), we will follow these steps: ### Step 1: Set up the equation We start with the equation: \[ \cos^{-1} \left( \frac{3}{5} \right) - \sin^{-1} \left( \frac{4}{5} \right) = \cos^{-1} x \] ### Step 2: Use the identity for sine and cosine We know that: \[ \sin^{-1} y + \cos^{-1} y = \frac{\pi}{2} \] From this, we can express \( \sin^{-1} \left( \frac{4}{5} \right) \) in terms of cosine: \[ \sin^{-1} \left( \frac{4}{5} \right) = \frac{\pi}{2} - \cos^{-1} \left( \frac{4}{5} \right) \] ### Step 3: Substitute the identity into the equation Substituting this into our equation gives: \[ \cos^{-1} \left( \frac{3}{5} \right) - \left( \frac{\pi}{2} - \cos^{-1} \left( \frac{4}{5} \right) \right) = \cos^{-1} x \] This simplifies to: \[ \cos^{-1} \left( \frac{3}{5} \right) + \cos^{-1} \left( \frac{4}{5} \right) - \frac{\pi}{2} = \cos^{-1} x \] ### Step 4: Use the cosine addition formula Using the cosine addition formula: \[ \cos^{-1} a + \cos^{-1} b = \cos^{-1} (ab - \sqrt{(1-a^2)(1-b^2)}) \] for \( a = \frac{3}{5} \) and \( b = \frac{4}{5} \): \[ \cos^{-1} \left( \frac{3}{5} \right) + \cos^{-1} \left( \frac{4}{5} \right) = \cos^{-1} \left( \frac{3}{5} \cdot \frac{4}{5} - \sqrt{\left(1 - \left(\frac{3}{5}\right)^2\right)\left(1 - \left(\frac{4}{5}\right)^2\right)} \right) \] ### Step 5: Calculate the components Calculating \( ab \): \[ ab = \frac{3}{5} \cdot \frac{4}{5} = \frac{12}{25} \] Calculating \( 1 - a^2 \) and \( 1 - b^2 \): \[ 1 - \left( \frac{3}{5} \right)^2 = 1 - \frac{9}{25} = \frac{16}{25} \] \[ 1 - \left( \frac{4}{5} \right)^2 = 1 - \frac{16}{25} = \frac{9}{25} \] Now, calculate the square root: \[ \sqrt{\left(1 - \left(\frac{3}{5}\right)^2\right)\left(1 - \left(\frac{4}{5}\right)^2\right)} = \sqrt{\frac{16}{25} \cdot \frac{9}{25}} = \sqrt{\frac{144}{625}} = \frac{12}{25} \] ### Step 6: Substitute back Now substituting back: \[ \cos^{-1} \left( \frac{12}{25} - \frac{12}{25} \right) = \cos^{-1} 0 \] Thus, we have: \[ \cos^{-1} 0 = \frac{\pi}{2} \] ### Step 7: Solve for x From the equation: \[ \cos^{-1} 0 = \cos^{-1} x \implies x = 1 \] ### Final Answer Thus, the value of \( x \) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (3)(TRUE AND FALSE)|3 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (3)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (2)(FILL IN THE BLANKS)|2 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/ REASONS) |3 Videos

Similar Questions

Explore conceptually related problems

If: sin(sin^(-1)(1/5) + cos^(-1)x)=1 , then: x=

If "tan"^(-1)(x+1)+cot^(-1)(x-1)="sin"^(-1) (4/5) + cos^(-1) (3/5) , then x has the value:

If sin(sin ""^(-1) [(1)/(5)] + cos^(-1) x) = 1 ,then x is

sin^(-1)(1/5)+cos^(-1)x=(pi)/(2)

Find the value of cos( 2 cos^(-1) x + sin^(-1) x) " when " x = 1/5

If sin (sin^(-1)(3/5)+cos^(-1)x)=1 then find value of x.

If cos(sin^(-1)(3/5)+cos^(-1)x)=0 then x is equal to

ML KHANNA-INVERSE CIRCULAR FUNCTIONS -Problem Set (3)(MULTIPLE CHOICE QUESTIONS)
  1. If tan^(-1)"" (x-1)/(x+1)+tan^(-1) ""(2x-1)/(2x+1)=tan^(-1) "" 23/36 ,...

    Text Solution

    |

  2. If 3sin^(-1)((2x)/(1+x^2))-4cos^(-1)((1-x^2)/(1+x^2))+2tan^(-1)((2x)/(...

    Text Solution

    |

  3. If cos^(-1)"" 3/5 - sin^(-1) ""4/5 = cos^(-1) x, " then " x=

    Text Solution

    |

  4. If sin^(-1) ""3/5+sin^(-1)""5/13=sin^(-1)x, " then " x=

    Text Solution

    |

  5. If cot^(-1) x+ sin^(-1)""1/sqrt5 = pi/4 , " then " x=

    Text Solution

    |

  6. If tan^(-1) x+tan^(-1) ""1/2 = pi/4 , " then " x=

    Text Solution

    |

  7. tan^(-1) 2x+tan^(-1) 3x=npi+(3pi)/4 , " then " x=

    Text Solution

    |

  8. sec^(-1)"" x/a-sec^(-1)"" x/b=sec^(-1) b-sec^(-1) a, " then " x=

    Text Solution

    |

  9. If tan^(-1)(a/x) + tan^(-1)(b/x) = pi/2, then: x=……

    Text Solution

    |

  10. If sin^(-1) ((2a)/(1+a^(2)))-cos^(-1)((1-b^(2))/(1+b^(2))) = tan ^(-1)...

    Text Solution

    |

  11. If sin^(-1)"" x/5 + cosec^(-1)"" 5/4 = pi/2 " then " x=

    Text Solution

    |

  12. If cos(2sin^(-1)x)=1/9 , " then " x=

    Text Solution

    |

  13. A solution of the equation tan^(-1)(1+x)+tan^(-1)(1-x)=(pi)/(2) is

    Text Solution

    |

  14. If sin^(-1)(x-x^2/2+x^3/4…..oo)+cos^(-1)(x^2-x^4/2+x^6/4-……oo)=pi/2 th...

    Text Solution

    |

  15. If cos^(-1)x gt sin^(-1) x, then

    Text Solution

    |

  16. If x^2+y^2+z^2=r^2, " then " tan^(-1) ""(xy)/(zr)+tan^(-1) ""(yz)/(xr)...

    Text Solution

    |

  17. If x+y+z=xyz, then tan^(-1)x+tan^(-1)y+tan^(-1)z=

    Text Solution

    |

  18. If xy +yz+zx=1 then tan^(-1)x+tan^(-1)y+tan^(-1)z=

    Text Solution

    |

  19. If 4sin^(-1)x+cos^(-1)x=pi, then x is equal to

    Text Solution

    |

  20. If (tan^(-1)x)^2+(cot^(-1)x)^2=(5pi^2)/8, then find xdot

    Text Solution

    |