Home
Class 12
MATHS
If cot^(-1) x+ sin^(-1)""1/sqrt5 = pi/4 ...

If `cot^(-1) x+ sin^(-1)""1/sqrt5 = pi/4 , " then " x=`

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cot^{-1} x + \sin^{-1} \left( \frac{1}{\sqrt{5}} \right) = \frac{\pi}{4} \), we will follow these steps: ### Step 1: Rewrite the equation using trigonometric identities We know that \( \cot^{-1} x = \tan^{-1} \left( \frac{1}{x} \right) \). Therefore, we can rewrite the equation as: \[ \tan^{-1} \left( \frac{1}{x} \right) + \sin^{-1} \left( \frac{1}{\sqrt{5}} \right) = \frac{\pi}{4} \] ### Step 2: Isolate \( \tan^{-1} \left( \frac{1}{x} \right) \) Rearranging the equation gives: \[ \tan^{-1} \left( \frac{1}{x} \right) = \frac{\pi}{4} - \sin^{-1} \left( \frac{1}{\sqrt{5}} \right) \] ### Step 3: Find \( \sin^{-1} \left( \frac{1}{\sqrt{5}} \right) \) Let \( \theta = \sin^{-1} \left( \frac{1}{\sqrt{5}} \right) \). This means: \[ \sin \theta = \frac{1}{\sqrt{5}} \] Using the Pythagorean identity, we find \( \cos \theta \): \[ \cos \theta = \sqrt{1 - \sin^2 \theta} = \sqrt{1 - \left( \frac{1}{\sqrt{5}} \right)^2} = \sqrt{1 - \frac{1}{5}} = \sqrt{\frac{4}{5}} = \frac{2}{\sqrt{5}} \] ### Step 4: Calculate \( \tan \theta \) Now, we can find \( \tan \theta \): \[ \tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\frac{1}{\sqrt{5}}}{\frac{2}{\sqrt{5}}} = \frac{1}{2} \] ### Step 5: Substitute back into the equation Now we substitute \( \tan \theta \) back into our equation: \[ \tan^{-1} \left( \frac{1}{x} \right) = \frac{\pi}{4} - \tan^{-1} \left( \frac{1}{2} \right) \] ### Step 6: Use the tangent subtraction formula Using the tangent subtraction formula: \[ \tan(a - b) = \frac{\tan a - \tan b}{1 + \tan a \tan b} \] where \( a = \frac{\pi}{4} \) and \( b = \tan^{-1} \left( \frac{1}{2} \right) \): \[ \tan \left( \frac{\pi}{4} - \tan^{-1} \left( \frac{1}{2} \right) \right) = \frac{1 - \frac{1}{2}}{1 + 1 \cdot \frac{1}{2}} = \frac{\frac{1}{2}}{\frac{3}{2}} = \frac{1}{3} \] ### Step 7: Set the equation for \( \frac{1}{x} \) Thus, we have: \[ \frac{1}{x} = \frac{1}{3} \] ### Step 8: Solve for \( x \) Taking the reciprocal gives: \[ x = 3 \] ### Final Answer The value of \( x \) is: \[ \boxed{3} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (3)(TRUE AND FALSE)|3 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (3)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (2)(FILL IN THE BLANKS)|2 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/ REASONS) |3 Videos

Similar Questions

Explore conceptually related problems

Solution of equation cot^(-1) x + sin^(-1) . 1/sqrt5 = pi/4 is

Solve for x : cot^(-1)x+ sin^(-1)( 1/sqrt(5)) = pi/4

4(cot^(-1)3+csc^(-1)sqrt(5))=pi

If cot^(-1)x+tan^(-1)(1/2)=pi/4 then x is

If tan^(-1) x + tan^(-1) y = (4pi)/(5) , then cot^(-1) x + cot^(-1) y equal to

if tan^(-1)(1/x)+cos^(-1)(2/sqrt5)=pi/4 then x equals

If sin^(-1)x+cot^(-1)(1/2)=(pi)/(2), " then : " x=

The numerical value of 4(cot^(-1)3 + sin^(-1) 1/sqrt5) =______.

If sin^(-1)x + tan ^(-1) x = (pi)/(2) , then prove that 2x^(2) + 1 = sqrt(5)

ML KHANNA-INVERSE CIRCULAR FUNCTIONS -Problem Set (3)(MULTIPLE CHOICE QUESTIONS)
  1. If cos^(-1)"" 3/5 - sin^(-1) ""4/5 = cos^(-1) x, " then " x=

    Text Solution

    |

  2. If sin^(-1) ""3/5+sin^(-1)""5/13=sin^(-1)x, " then " x=

    Text Solution

    |

  3. If cot^(-1) x+ sin^(-1)""1/sqrt5 = pi/4 , " then " x=

    Text Solution

    |

  4. If tan^(-1) x+tan^(-1) ""1/2 = pi/4 , " then " x=

    Text Solution

    |

  5. tan^(-1) 2x+tan^(-1) 3x=npi+(3pi)/4 , " then " x=

    Text Solution

    |

  6. sec^(-1)"" x/a-sec^(-1)"" x/b=sec^(-1) b-sec^(-1) a, " then " x=

    Text Solution

    |

  7. If tan^(-1)(a/x) + tan^(-1)(b/x) = pi/2, then: x=……

    Text Solution

    |

  8. If sin^(-1) ((2a)/(1+a^(2)))-cos^(-1)((1-b^(2))/(1+b^(2))) = tan ^(-1)...

    Text Solution

    |

  9. If sin^(-1)"" x/5 + cosec^(-1)"" 5/4 = pi/2 " then " x=

    Text Solution

    |

  10. If cos(2sin^(-1)x)=1/9 , " then " x=

    Text Solution

    |

  11. A solution of the equation tan^(-1)(1+x)+tan^(-1)(1-x)=(pi)/(2) is

    Text Solution

    |

  12. If sin^(-1)(x-x^2/2+x^3/4…..oo)+cos^(-1)(x^2-x^4/2+x^6/4-……oo)=pi/2 th...

    Text Solution

    |

  13. If cos^(-1)x gt sin^(-1) x, then

    Text Solution

    |

  14. If x^2+y^2+z^2=r^2, " then " tan^(-1) ""(xy)/(zr)+tan^(-1) ""(yz)/(xr)...

    Text Solution

    |

  15. If x+y+z=xyz, then tan^(-1)x+tan^(-1)y+tan^(-1)z=

    Text Solution

    |

  16. If xy +yz+zx=1 then tan^(-1)x+tan^(-1)y+tan^(-1)z=

    Text Solution

    |

  17. If 4sin^(-1)x+cos^(-1)x=pi, then x is equal to

    Text Solution

    |

  18. If (tan^(-1)x)^2+(cot^(-1)x)^2=(5pi^2)/8, then find xdot

    Text Solution

    |

  19. The value of tan^(2)(sec^(-1)2)+cot^(2)(cosec^(-1)3) is

    Text Solution

    |

  20. If (sin^(-1)x)^(2)+(cos^(-1)x)^(2)=(5pi^(2))/(8) then x =

    Text Solution

    |