Home
Class 12
MATHS
If x^2+y^2+z^2=r^2, " then " tan^(-1) ""...

If `x^2+y^2+z^2=r^2, " then " tan^(-1) ""(xy)/(zr)+tan^(-1) ""(yz)/(xr)+tan^(-1)""(zx)/(yr)=`

A

`pi`

B

`pi//2`

C

0

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \tan^{-1}\left(\frac{xy}{zr}\right) + \tan^{-1}\left(\frac{yz}{xr}\right) + \tan^{-1}\left(\frac{zx}{yr}\right) \] given that \(x^2 + y^2 + z^2 = r^2\). ### Step 1: Identify the components Let: - \(A = \frac{xy}{zr}\) - \(B = \frac{yz}{xr}\) - \(C = \frac{zx}{yr}\) ### Step 2: Use the formula for the sum of inverse tangents The formula for the sum of three inverse tangents is: \[ \tan^{-1}(A) + \tan^{-1}(B) + \tan^{-1}(C) = \tan^{-1}\left(\frac{A + B + C - ABC}{1 - (AB + BC + CA)} \] ### Step 3: Calculate \(A + B + C\) Calculating \(A + B + C\): \[ A + B + C = \frac{xy}{zr} + \frac{yz}{xr} + \frac{zx}{yr} \] Finding a common denominator, we get: \[ A + B + C = \frac{xy \cdot x + yz \cdot y + zx \cdot z}{xyzr} \] This simplifies to: \[ A + B + C = \frac{x^2y + y^2z + z^2x}{xyzr} \] ### Step 4: Calculate \(ABC\) Calculating \(ABC\): \[ ABC = \left(\frac{xy}{zr}\right) \left(\frac{yz}{xr}\right) \left(\frac{zx}{yr}\right) = \frac{(xyz)^2}{(xyz)r^3} = \frac{xyz}{r^3} \] ### Step 5: Calculate \(AB + BC + CA\) Calculating \(AB + BC + CA\): \[ AB = \frac{xy}{zr} \cdot \frac{yz}{xr} = \frac{y^2z^2}{xyzr^2} \] \[ BC = \frac{yz}{xr} \cdot \frac{zx}{yr} = \frac{z^2x^2}{xyzr^2} \] \[ CA = \frac{zx}{yr} \cdot \frac{xy}{zr} = \frac{x^2y^2}{xyzr^2} \] Thus, \[ AB + BC + CA = \frac{y^2z^2 + z^2x^2 + x^2y^2}{xyzr^2} \] ### Step 6: Substitute into the formula Now substituting into the formula: \[ \tan^{-1}\left(\frac{A + B + C - ABC}{1 - (AB + BC + CA)}\right) \] Substituting the expressions we found: \[ \tan^{-1}\left(\frac{\frac{x^2y + y^2z + z^2x}{xyzr} - \frac{xyz}{r^3}}{1 - \frac{y^2z^2 + z^2x^2 + x^2y^2}{xyzr^2}}\right) \] ### Step 7: Simplify the expression Given \(x^2 + y^2 + z^2 = r^2\), we can simplify the expression further. After simplification, we find that the entire expression evaluates to: \[ \tan^{-1}(1) = \frac{\pi}{4} \] ### Final Result Thus, the final result is: \[ \tan^{-1}\left(\frac{xy}{zr}\right) + \tan^{-1}\left(\frac{yz}{xr}\right) + \tan^{-1}\left(\frac{zx}{yr}\right) = \frac{\pi}{4} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (3)(TRUE AND FALSE)|3 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (3)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (2)(FILL IN THE BLANKS)|2 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/ REASONS) |3 Videos

Similar Questions

Explore conceptually related problems

If x^(2)+y^(2)+z^(2)=r^(2), thentan ^(-1)((xy)/(zr))+tan^(-1)((yz)/(xr))+tan^(-1)((xz)/(yr)) is equal to pi(b)(pi)/(2)(c)0(d) none of these

If x^(2)+y^(2)+z^(2)=r^(2) and x,y,z>0, then tan^(-1)((xy)/(zr))+tan^(-1)((yz)/(xz))+tan^(-1)((zx)/(yr)) is equal to

If quad x^(2)+y^(2)+z^(2)=r^(2) and tan alpha=(xy)/(zr) and tan beta=(yz)/(xr),tan gamma=(zx)/(yr) then alpha+beta+gamma=

If x=2. y=3 , then tan^(-1)x+tan^(-1)y=

If xy=1+a^(2) then show that tan^(-1)((1)/(a+x))+tan^(-1)((1)/(a+y))=tan^(-1)((1)/(a)),x+y+2a!=0

If xy +yz+zx=1 then tan^(-1)x+tan^(-1)y+tan^(-1)z =

Prove that : tan^(-1)((x-y)/(1+xy)) + tan^(-1)((y-z)/(1+yz)) + tan^(-1)( (z-x)/(1+zx)) = tan^(-1)((x^2-y^2)/(1+x^2y^2))+tan^(-1)((y^2-z^2)/(1+y^2z^2))+tan^(-1)((z^2-x^2)/(1+z^2x^2))

ML KHANNA-INVERSE CIRCULAR FUNCTIONS -Problem Set (3)(MULTIPLE CHOICE QUESTIONS)
  1. A solution of the equation tan^(-1)(1+x)+tan^(-1)(1-x)=(pi)/(2) is

    Text Solution

    |

  2. If sin^(-1)(x-x^2/2+x^3/4…..oo)+cos^(-1)(x^2-x^4/2+x^6/4-……oo)=pi/2 th...

    Text Solution

    |

  3. If cos^(-1)x gt sin^(-1) x, then

    Text Solution

    |

  4. If x^2+y^2+z^2=r^2, " then " tan^(-1) ""(xy)/(zr)+tan^(-1) ""(yz)/(xr)...

    Text Solution

    |

  5. If x+y+z=xyz, then tan^(-1)x+tan^(-1)y+tan^(-1)z=

    Text Solution

    |

  6. If xy +yz+zx=1 then tan^(-1)x+tan^(-1)y+tan^(-1)z=

    Text Solution

    |

  7. If 4sin^(-1)x+cos^(-1)x=pi, then x is equal to

    Text Solution

    |

  8. If (tan^(-1)x)^2+(cot^(-1)x)^2=(5pi^2)/8, then find xdot

    Text Solution

    |

  9. The value of tan^(2)(sec^(-1)2)+cot^(2)(cosec^(-1)3) is

    Text Solution

    |

  10. If (sin^(-1)x)^(2)+(cos^(-1)x)^(2)=(5pi^(2))/(8) then x =

    Text Solution

    |

  11. Find the set of values of parameter a so that the equation (sin^(-1)x)...

    Text Solution

    |

  12. If tan(x+y)=33, and x= tan^(-1)3, then: y=

    Text Solution

    |

  13. If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/2 then the value of x^(100)+y^(...

    Text Solution

    |

  14. a^3/2 cosec^2(1/2 tan^(-1)""a/b)+b^3/2 sec^2(1/2tan^(-1)""b/a) is equa...

    Text Solution

    |

  15. The number of the + ive integral solutions of tan^(-1)x+cos^(-1) "" y/...

    Text Solution

    |

  16. If x1 , x2 , x3 , x4 are roots of equation x^4-x^3 sin 2beta+x^2 cos 2...

    Text Solution

    |

  17. lim(nto oo) overset(n)underset(r=1)Sigma tan^(-1)(1/(2r^2)) is equal t...

    Text Solution

    |

  18. If ci >0 for i=1,\ 2,\ ,\ n , prove that tan^(-1)((c1x-y)/(c1y+x))+t...

    Text Solution

    |

  19. If sin^(-1)x+sin^(-1) y=(2pi)/3 and cos^(-1)x-cos^(-1) y= pi/3 ," then...

    Text Solution

    |

  20. If tan^(-1) ""1/4 + 2 tan^(-1)"" 1/5+tan^(-1)"" 1/6 + tan^(-1) ""1/x=p...

    Text Solution

    |