Home
Class 12
MATHS
a^3/2 cosec^2(1/2 tan^(-1)""a/b)+b^3/2 s...

`a^3/2 cosec^2(1/2 tan^(-1)""a/b)+b^3/2 sec^2(1/2tan^(-1)""b/a)` is equal to

A

`(a-b)(a^2+b^2)`

B

`(a+b)(a^2-b^2)`

C

`(a+b)(a^2+b^2)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \frac{a^{3/2}}{\csc^2\left(\frac{1}{2} \tan^{-1}\left(\frac{a}{b}\right)\right)} + \frac{b^{3/2}}{\sec^2\left(\frac{1}{2} \tan^{-1}\left(\frac{b}{a}\right)\right)} \), we will follow these steps: ### Step 1: Convert Cosecant and Secant We know that: \[ \csc^2 \theta = \frac{1}{\sin^2 \theta} \quad \text{and} \quad \sec^2 \theta = \frac{1}{\cos^2 \theta} \] Thus, we can rewrite the expression as: \[ \frac{a^{3/2} \sin^2\left(\frac{1}{2} \tan^{-1}\left(\frac{a}{b}\right)\right)}{1} + \frac{b^{3/2} \cos^2\left(\frac{1}{2} \tan^{-1}\left(\frac{b}{a}\right)\right)}{1} \] ### Step 2: Use the Half-Angle Formulas Using the half-angle formulas: \[ \sin^2 \theta = \frac{1 - \cos(2\theta)}{2} \quad \text{and} \quad \cos^2 \theta = \frac{1 + \cos(2\theta)}{2} \] We can express: \[ \sin^2\left(\frac{1}{2} \tan^{-1}\left(\frac{a}{b}\right)\right) = \frac{1 - \cos\left(\tan^{-1}\left(\frac{a}{b}\right)\right)}{2} \] \[ \cos^2\left(\frac{1}{2} \tan^{-1}\left(\frac{b}{a}\right)\right) = \frac{1 + \cos\left(\tan^{-1}\left(\frac{b}{a}\right)\right)}{2} \] ### Step 3: Find the Cosine Values Using the definition of tangent: \[ \cos\left(\tan^{-1}\left(\frac{a}{b}\right)\right) = \frac{b}{\sqrt{a^2 + b^2}} \quad \text{and} \quad \cos\left(\tan^{-1}\left(\frac{b}{a}\right)\right) = \frac{a}{\sqrt{a^2 + b^2}} \] ### Step 4: Substitute Back Substituting these values back into the expression: \[ \frac{a^{3/2} \left(\frac{1 - \frac{b}{\sqrt{a^2 + b^2}}}{2}\right)}{1} + \frac{b^{3/2} \left(\frac{1 + \frac{a}{\sqrt{a^2 + b^2}}}{2}\right)}{1} \] ### Step 5: Simplify the Expression Now, simplifying: \[ = \frac{a^{3/2}}{2} \left(1 - \frac{b}{\sqrt{a^2 + b^2}}\right) + \frac{b^{3/2}}{2} \left(1 + \frac{a}{\sqrt{a^2 + b^2}}\right) \] Combine the terms: \[ = \frac{1}{2} \left(a^{3/2} + b^{3/2} - \frac{a^{3/2} b}{\sqrt{a^2 + b^2}} + \frac{a b^{3/2}}{\sqrt{a^2 + b^2}}\right) \] ### Step 6: Factor Out Common Terms Factoring out common terms: \[ = \frac{1}{2} \left(a^{3/2} + b^{3/2} + \frac{ab(a^{1/2} - b^{1/2})}{\sqrt{a^2 + b^2}}\right) \] ### Final Result Thus, the final simplified expression is: \[ \frac{a^{3/2} + b^{3/2} + ab(a^{1/2} - b^{1/2})}{2\sqrt{a^2 + b^2}} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (3)(TRUE AND FALSE)|3 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (3)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (2)(FILL IN THE BLANKS)|2 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/ REASONS) |3 Videos

Similar Questions

Explore conceptually related problems

sec^(2) (tan^(-1) 2) + cosec^(2) (cot^(-1) 3) is equal to

sec^(2) ( tan^(-1)2) + cosec^(2) ( cot^(-1)3) =

sec^(2)(tan^(-1)2) + "cosec"^(2)(cot^(-1)3)=

Prove that sec^(2) (tan ^(-1) 3) + cosec^(2)(cot^(-1)2) = 15

sec^(2)(tan^(01)2)+csc^(2)(cot^(-1)3) is equal to 5 (b) 13 (c) 15 (d) 6

ML KHANNA-INVERSE CIRCULAR FUNCTIONS -Problem Set (3)(MULTIPLE CHOICE QUESTIONS)
  1. A solution of the equation tan^(-1)(1+x)+tan^(-1)(1-x)=(pi)/(2) is

    Text Solution

    |

  2. If sin^(-1)(x-x^2/2+x^3/4…..oo)+cos^(-1)(x^2-x^4/2+x^6/4-……oo)=pi/2 th...

    Text Solution

    |

  3. If cos^(-1)x gt sin^(-1) x, then

    Text Solution

    |

  4. If x^2+y^2+z^2=r^2, " then " tan^(-1) ""(xy)/(zr)+tan^(-1) ""(yz)/(xr)...

    Text Solution

    |

  5. If x+y+z=xyz, then tan^(-1)x+tan^(-1)y+tan^(-1)z=

    Text Solution

    |

  6. If xy +yz+zx=1 then tan^(-1)x+tan^(-1)y+tan^(-1)z=

    Text Solution

    |

  7. If 4sin^(-1)x+cos^(-1)x=pi, then x is equal to

    Text Solution

    |

  8. If (tan^(-1)x)^2+(cot^(-1)x)^2=(5pi^2)/8, then find xdot

    Text Solution

    |

  9. The value of tan^(2)(sec^(-1)2)+cot^(2)(cosec^(-1)3) is

    Text Solution

    |

  10. If (sin^(-1)x)^(2)+(cos^(-1)x)^(2)=(5pi^(2))/(8) then x =

    Text Solution

    |

  11. Find the set of values of parameter a so that the equation (sin^(-1)x)...

    Text Solution

    |

  12. If tan(x+y)=33, and x= tan^(-1)3, then: y=

    Text Solution

    |

  13. If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/2 then the value of x^(100)+y^(...

    Text Solution

    |

  14. a^3/2 cosec^2(1/2 tan^(-1)""a/b)+b^3/2 sec^2(1/2tan^(-1)""b/a) is equa...

    Text Solution

    |

  15. The number of the + ive integral solutions of tan^(-1)x+cos^(-1) "" y/...

    Text Solution

    |

  16. If x1 , x2 , x3 , x4 are roots of equation x^4-x^3 sin 2beta+x^2 cos 2...

    Text Solution

    |

  17. lim(nto oo) overset(n)underset(r=1)Sigma tan^(-1)(1/(2r^2)) is equal t...

    Text Solution

    |

  18. If ci >0 for i=1,\ 2,\ ,\ n , prove that tan^(-1)((c1x-y)/(c1y+x))+t...

    Text Solution

    |

  19. If sin^(-1)x+sin^(-1) y=(2pi)/3 and cos^(-1)x-cos^(-1) y= pi/3 ," then...

    Text Solution

    |

  20. If tan^(-1) ""1/4 + 2 tan^(-1)"" 1/5+tan^(-1)"" 1/6 + tan^(-1) ""1/x=p...

    Text Solution

    |