Home
Class 12
MATHS
The number of the + ive integral solutio...

The number of the + ive integral solutions of `tan^(-1)x+cos^(-1) "" y/(sqrt(1+y^2))=sin^(-1) (3/(sqrt10)) `
` " or " tan^(-1) x+ cot^(-1) y = tan^(-1) 3` is

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the number of positive integral solutions for the equation: \[ \tan^{-1} x + \cos^{-1} \left(\frac{y}{\sqrt{1+y^2}}\right) = \sin^{-1} \left(\frac{3}{\sqrt{10}}\right) \] or equivalently, \[ \tan^{-1} x + \cot^{-1} y = \tan^{-1} 3 \] ### Step 1: Rewrite the equation Using the identity \(\cot^{-1} y = \tan^{-1} \frac{1}{y}\), we can rewrite the equation as: \[ \tan^{-1} x + \tan^{-1} \frac{1}{y} = \tan^{-1} 3 \] ### Step 2: Use the addition formula for \(\tan^{-1}\) The addition formula for \(\tan^{-1}\) states that: \[ \tan^{-1} a + \tan^{-1} b = \tan^{-1} \left(\frac{a + b}{1 - ab}\right) \] This is valid when \(ab < 1\). Here, we can apply this formula: Let \(a = x\) and \(b = \frac{1}{y}\). Thus, we have: \[ \tan^{-1} \left(\frac{x + \frac{1}{y}}{1 - x \cdot \frac{1}{y}}\right) = \tan^{-1} 3 \] ### Step 3: Set the arguments equal Since the \(\tan^{-1}\) functions are equal, we can set the arguments equal to each other: \[ \frac{x + \frac{1}{y}}{1 - \frac{x}{y}} = 3 \] ### Step 4: Cross-multiply to eliminate the fraction Cross-multiplying gives us: \[ x + \frac{1}{y} = 3 \left(1 - \frac{x}{y}\right) \] Expanding this, we get: \[ x + \frac{1}{y} = 3 - \frac{3x}{y} \] ### Step 5: Rearranging the equation Rearranging gives us: \[ x + \frac{1}{y} + \frac{3x}{y} = 3 \] Combining the terms involving \(y\): \[ x + \frac{1 + 3x}{y} = 3 \] ### Step 6: Isolate \(\frac{1 + 3x}{y}\) Isolating \(\frac{1 + 3x}{y}\): \[ \frac{1 + 3x}{y} = 3 - x \] ### Step 7: Solve for \(y\) Now, we can express \(y\) in terms of \(x\): \[ y = \frac{1 + 3x}{3 - x} \] ### Step 8: Determine the conditions for positive integral solutions To find positive integral solutions, both \(x\) and \(y\) must be positive integers. 1. The denominator \(3 - x\) must be positive, which gives us \(x < 3\). 2. The possible positive integer values for \(x\) are \(1\) and \(2\). ### Step 9: Calculate \(y\) for each value of \(x\) - For \(x = 1\): \[ y = \frac{1 + 3(1)}{3 - 1} = \frac{4}{2} = 2 \] - For \(x = 2\): \[ y = \frac{1 + 3(2)}{3 - 2} = \frac{7}{1} = 7 \] ### Step 10: List the solutions The pairs \((x, y)\) that satisfy the equation are: 1. \((1, 2)\) 2. \((2, 7)\) ### Conclusion Thus, there are **2 positive integral solutions** to the equation.
Promotional Banner

Topper's Solved these Questions

  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (3)(TRUE AND FALSE)|3 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (3)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (2)(FILL IN THE BLANKS)|2 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/ REASONS) |3 Videos

Similar Questions

Explore conceptually related problems

The positive integral solution of "tan"^(-1)x+"cos"^(-1)(y)/(sqrt(1+y^2))="sin"^(-1)"(3)/(sqrt10) is

The number of positive integral solutions of tan^(-1)x + cot^(-1)y= tan^(-1)3 is :

If tan^(-1)x+cos^(-1)((y)/(sqrt(1+y^(2))))=sin^(-1)((3)/(sqrt(10))) , then

Find the number of positive integral solutions of tan ^(-1)x+cot^(-1)y=tan^(-1)3

Find the number of positive integral solution of the equation tan^(-1)x+(cos^(-1)y)/(sqrt(1+y^(2)))=(sin^(-1)3)/(sqrt(10))

Find the number of positive integral solution of the equation tan^(-1)x+cos^(-1)(y)/(sqrt(1+y^(2)))=sin^(-1)((3)/(sqrt(10))) .

An integral solution of the equation tan^(-1)x+tan^(-1)(1//y)=tan^(-1)3 is

Prove that : tan^(-1) x+cot^(-1) y = tan^(-1) ((xy+1)/(y-x))

Find the solution of the equation tan^(-1)x-cot^(-1)x=tan^(-1)((1)/(sqrt(3)))

ML KHANNA-INVERSE CIRCULAR FUNCTIONS -Problem Set (3)(MULTIPLE CHOICE QUESTIONS)
  1. A solution of the equation tan^(-1)(1+x)+tan^(-1)(1-x)=(pi)/(2) is

    Text Solution

    |

  2. If sin^(-1)(x-x^2/2+x^3/4…..oo)+cos^(-1)(x^2-x^4/2+x^6/4-……oo)=pi/2 th...

    Text Solution

    |

  3. If cos^(-1)x gt sin^(-1) x, then

    Text Solution

    |

  4. If x^2+y^2+z^2=r^2, " then " tan^(-1) ""(xy)/(zr)+tan^(-1) ""(yz)/(xr)...

    Text Solution

    |

  5. If x+y+z=xyz, then tan^(-1)x+tan^(-1)y+tan^(-1)z=

    Text Solution

    |

  6. If xy +yz+zx=1 then tan^(-1)x+tan^(-1)y+tan^(-1)z=

    Text Solution

    |

  7. If 4sin^(-1)x+cos^(-1)x=pi, then x is equal to

    Text Solution

    |

  8. If (tan^(-1)x)^2+(cot^(-1)x)^2=(5pi^2)/8, then find xdot

    Text Solution

    |

  9. The value of tan^(2)(sec^(-1)2)+cot^(2)(cosec^(-1)3) is

    Text Solution

    |

  10. If (sin^(-1)x)^(2)+(cos^(-1)x)^(2)=(5pi^(2))/(8) then x =

    Text Solution

    |

  11. Find the set of values of parameter a so that the equation (sin^(-1)x)...

    Text Solution

    |

  12. If tan(x+y)=33, and x= tan^(-1)3, then: y=

    Text Solution

    |

  13. If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/2 then the value of x^(100)+y^(...

    Text Solution

    |

  14. a^3/2 cosec^2(1/2 tan^(-1)""a/b)+b^3/2 sec^2(1/2tan^(-1)""b/a) is equa...

    Text Solution

    |

  15. The number of the + ive integral solutions of tan^(-1)x+cos^(-1) "" y/...

    Text Solution

    |

  16. If x1 , x2 , x3 , x4 are roots of equation x^4-x^3 sin 2beta+x^2 cos 2...

    Text Solution

    |

  17. lim(nto oo) overset(n)underset(r=1)Sigma tan^(-1)(1/(2r^2)) is equal t...

    Text Solution

    |

  18. If ci >0 for i=1,\ 2,\ ,\ n , prove that tan^(-1)((c1x-y)/(c1y+x))+t...

    Text Solution

    |

  19. If sin^(-1)x+sin^(-1) y=(2pi)/3 and cos^(-1)x-cos^(-1) y= pi/3 ," then...

    Text Solution

    |

  20. If tan^(-1) ""1/4 + 2 tan^(-1)"" 1/5+tan^(-1)"" 1/6 + tan^(-1) ""1/x=p...

    Text Solution

    |