Home
Class 12
MATHS
If x1 , x2 , x3 , x4 are roots of equati...

If `x_1 , x_2 , x_3 , x_4` are roots of equation `x^4-x^3 sin 2beta+x^2 cos 2beta-x cos beta-sinbeta=0, " then " overset(4)underset(i=1)Sigma tan^(-1)x_i=`

A

`beta`

B

`pi//2-beta`

C

`pi-beta`

D

`-beta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sum of the inverse tangent of the roots of the polynomial equation given. Let's break it down step by step. ### Step 1: Identify the Polynomial Equation The polynomial equation given is: \[ x^4 - x^3 \sin(2\beta) + x^2 \cos(2\beta) - x \cos(\beta) - \sin(\beta) = 0 \] ### Step 2: Use Vieta's Formulas From Vieta's formulas, we can find the sums and products of the roots \(x_1, x_2, x_3, x_4\): - The sum of the roots \(x_1 + x_2 + x_3 + x_4 = \sin(2\beta)\) - The sum of the products of the roots taken two at a time \(x_1x_2 + x_1x_3 + x_1x_4 + x_2x_3 + x_2x_4 + x_3x_4 = \cos(2\beta)\) - The sum of the products of the roots taken three at a time \(x_1x_2x_3 + x_1x_2x_4 + x_1x_3x_4 + x_2x_3x_4 = \cos(\beta)\) - The product of the roots \(x_1x_2x_3x_4 = \sin(\beta)\) ### Step 3: Find the Required Sum We need to find: \[ \sum_{i=1}^{4} \tan^{-1}(x_i) \] Using the formula for the sum of inverse tangents: \[ \tan^{-1}(x_1) + \tan^{-1}(x_2) = \tan^{-1}\left(\frac{x_1 + x_2}{1 - x_1 x_2}\right) \] We can apply this iteratively: 1. First, compute \( \tan^{-1}(x_1) + \tan^{-1}(x_2) \): \[ \tan^{-1}\left(\frac{x_1 + x_2}{1 - x_1 x_2}\right) \] 2. Next, compute \( \tan^{-1}(x_3) + \tan^{-1}(x_4) \): \[ \tan^{-1}\left(\frac{x_3 + x_4}{1 - x_3 x_4}\right) \] 3. Finally, combine the results: \[ \tan^{-1}\left(\frac{\frac{x_1 + x_2}{1 - x_1 x_2} + \frac{x_3 + x_4}{1 - x_3 x_4}}{1 - \left(\frac{x_1 + x_2}{1 - x_1 x_2}\right)\left(\frac{x_3 + x_4}{1 - x_3 x_4}\right)}\right) \] ### Step 4: Substitute Values Using Vieta's Substituting the values from Vieta's: - \(x_1 + x_2 = \sin(2\beta)\) - \(x_1 x_2 = \frac{\cos(2\beta)}{1}\) - \(x_3 + x_4 = \sin(2\beta)\) - \(x_3 x_4 = \frac{\cos(2\beta)}{1}\) ### Step 5: Simplify the Expression After substituting and simplifying, we will reach a form that can be expressed in terms of \( \tan^{-1} \) and then use the properties of inverse tangent to simplify further. ### Step 6: Final Result After simplification, we find: \[ \sum_{i=1}^{4} \tan^{-1}(x_i) = \frac{\pi}{2} - \beta \] ### Conclusion Thus, the final answer is: \[ \sum_{i=1}^{4} \tan^{-1}(x_i) = \frac{\pi}{2} - \beta \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (3)(TRUE AND FALSE)|3 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (3)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (2)(FILL IN THE BLANKS)|2 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/ REASONS) |3 Videos

Similar Questions

Explore conceptually related problems

If x_(1),x_(2),x_(3),x_(4) are the roots of the equation x^(4)-x^(3)sin2 beta+x^(2)*cos2 beta-x cos beta-sin beta=0, then tan^(-1)x_(1)+tan^(-1)x_(2)+tan^(-1)x_(3)+tan^(-1)x_(4) is equal to

If x_(1),x_(2),x_(3),andx_(4) are the roots of the equations x^(4)-x^(3)sin2 beta+x^(2)cos2 beta-x cos beta-sin beta=0, prove that tan^(-1)x_(1)+tan^(-1)x_(2)+tan^(-1)x_(3)+tan^(-1)x_(4)=n pi+((pi)/(2))-beta, where n is an integer.

If tan theta_(1),tan theta_(2),tan theta_(3),tan theta_(4) are the roots of the equation x^(4)-x^(3)sin2 beta+x^(2)cos2 beta-x cos beta-sin beta=0 then prove that tan(theta_(1)+theta_(2)+theta_(3)+theta_(4))=cot beta

If alpha and beta are the roots of the equation x^(2)-x+3=0 then alpha^(4)+beta^(4)=

If alpha,beta,gamma,delta are the roots of the equation 3x^(4)-8x^(3)+2x^(2)-9=0 then sum alpha beta=

If alpha and beta are roots of the equation x^(2)+x-3=0 then value of alpha^(3)-4 beta^(2)+24 is

If alpha and beta are the roots of the equation x^(2)-2x+4=0 Then 2^(n+1)cos backslash(n pi)/(3) is equal to

ML KHANNA-INVERSE CIRCULAR FUNCTIONS -Problem Set (3)(MULTIPLE CHOICE QUESTIONS)
  1. A solution of the equation tan^(-1)(1+x)+tan^(-1)(1-x)=(pi)/(2) is

    Text Solution

    |

  2. If sin^(-1)(x-x^2/2+x^3/4…..oo)+cos^(-1)(x^2-x^4/2+x^6/4-……oo)=pi/2 th...

    Text Solution

    |

  3. If cos^(-1)x gt sin^(-1) x, then

    Text Solution

    |

  4. If x^2+y^2+z^2=r^2, " then " tan^(-1) ""(xy)/(zr)+tan^(-1) ""(yz)/(xr)...

    Text Solution

    |

  5. If x+y+z=xyz, then tan^(-1)x+tan^(-1)y+tan^(-1)z=

    Text Solution

    |

  6. If xy +yz+zx=1 then tan^(-1)x+tan^(-1)y+tan^(-1)z=

    Text Solution

    |

  7. If 4sin^(-1)x+cos^(-1)x=pi, then x is equal to

    Text Solution

    |

  8. If (tan^(-1)x)^2+(cot^(-1)x)^2=(5pi^2)/8, then find xdot

    Text Solution

    |

  9. The value of tan^(2)(sec^(-1)2)+cot^(2)(cosec^(-1)3) is

    Text Solution

    |

  10. If (sin^(-1)x)^(2)+(cos^(-1)x)^(2)=(5pi^(2))/(8) then x =

    Text Solution

    |

  11. Find the set of values of parameter a so that the equation (sin^(-1)x)...

    Text Solution

    |

  12. If tan(x+y)=33, and x= tan^(-1)3, then: y=

    Text Solution

    |

  13. If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/2 then the value of x^(100)+y^(...

    Text Solution

    |

  14. a^3/2 cosec^2(1/2 tan^(-1)""a/b)+b^3/2 sec^2(1/2tan^(-1)""b/a) is equa...

    Text Solution

    |

  15. The number of the + ive integral solutions of tan^(-1)x+cos^(-1) "" y/...

    Text Solution

    |

  16. If x1 , x2 , x3 , x4 are roots of equation x^4-x^3 sin 2beta+x^2 cos 2...

    Text Solution

    |

  17. lim(nto oo) overset(n)underset(r=1)Sigma tan^(-1)(1/(2r^2)) is equal t...

    Text Solution

    |

  18. If ci >0 for i=1,\ 2,\ ,\ n , prove that tan^(-1)((c1x-y)/(c1y+x))+t...

    Text Solution

    |

  19. If sin^(-1)x+sin^(-1) y=(2pi)/3 and cos^(-1)x-cos^(-1) y= pi/3 ," then...

    Text Solution

    |

  20. If tan^(-1) ""1/4 + 2 tan^(-1)"" 1/5+tan^(-1)"" 1/6 + tan^(-1) ""1/x=p...

    Text Solution

    |