Home
Class 12
MATHS
If tan^(-1) ""1/4 + 2 tan^(-1)"" 1/5+tan...

If `tan^(-1) ""1/4 + 2 tan^(-1)"" 1/5+tan^(-1)"" 1/6 + tan^(-1) ""1/x=pi/4 , " then " x=`

A

`- 321/9`

B

`237/4`

C

`- 461/9`

D

`349/7`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan^{-1} \left( \frac{1}{4} \right) + 2 \tan^{-1} \left( \frac{1}{5} \right) + \tan^{-1} \left( \frac{1}{6} \right) + \tan^{-1} \left( \frac{1}{x} \right) = \frac{\pi}{4} \), we will follow these steps: ### Step 1: Simplify \( 2 \tan^{-1} \left( \frac{1}{5} \right) \) Using the double angle formula for tangent: \[ \tan(2\theta) = \frac{2\tan(\theta)}{1 - \tan^2(\theta)} \] Let \( \theta = \tan^{-1} \left( \frac{1}{5} \right) \). Then, \( \tan(\theta) = \frac{1}{5} \). Calculating \( \tan(2\theta) \): \[ \tan(2\tan^{-1} \left( \frac{1}{5} \right)) = \frac{2 \cdot \frac{1}{5}}{1 - \left( \frac{1}{5} \right)^2} = \frac{\frac{2}{5}}{1 - \frac{1}{25}} = \frac{\frac{2}{5}}{\frac{24}{25}} = \frac{2 \cdot 25}{5 \cdot 24} = \frac{10}{24} = \frac{5}{12} \] ### Step 2: Substitute back into the equation Now, substitute \( 2 \tan^{-1} \left( \frac{1}{5} \right) \) with \( \tan^{-1} \left( \frac{5}{12} \right) \): \[ \tan^{-1} \left( \frac{1}{4} \right) + \tan^{-1} \left( \frac{5}{12} \right) + \tan^{-1} \left( \frac{1}{6} \right) + \tan^{-1} \left( \frac{1}{x} \right) = \frac{\pi}{4} \] ### Step 3: Combine the first two terms Using the formula for the sum of arctangents: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1} \left( \frac{a + b}{1 - ab} \right) \] Let \( a = \frac{1}{4} \) and \( b = \frac{5}{12} \): \[ \tan^{-1} \left( \frac{\frac{1}{4} + \frac{5}{12}}{1 - \frac{1}{4} \cdot \frac{5}{12}} \right) \] Calculating \( \frac{1}{4} + \frac{5}{12} \): \[ \frac{3}{12} + \frac{5}{12} = \frac{8}{12} = \frac{2}{3} \] Calculating \( 1 - \frac{1}{4} \cdot \frac{5}{12} \): \[ 1 - \frac{5}{48} = \frac{48 - 5}{48} = \frac{43}{48} \] Thus, \[ \tan^{-1} \left( \frac{\frac{2}{3}}{\frac{43}{48}} \right) = \tan^{-1} \left( \frac{2 \cdot 48}{3 \cdot 43} \right) = \tan^{-1} \left( \frac{96}{129} \right) = \tan^{-1} \left( \frac{32}{43} \right) \] ### Step 4: Combine with the third term Now we have: \[ \tan^{-1} \left( \frac{32}{43} \right) + \tan^{-1} \left( \frac{1}{6} \right) + \tan^{-1} \left( \frac{1}{x} \right) = \frac{\pi}{4} \] Using the sum formula again: Let \( a = \frac{32}{43} \) and \( b = \frac{1}{6} \): \[ \tan^{-1} \left( \frac{\frac{32}{43} + \frac{1}{6}}{1 - \frac{32}{43} \cdot \frac{1}{6}} \right) \] Calculating \( \frac{32}{43} + \frac{1}{6} \): \[ \frac{32 \cdot 6 + 1 \cdot 43}{43 \cdot 6} = \frac{192 + 43}{258} = \frac{235}{258} \] Calculating \( 1 - \frac{32}{43} \cdot \frac{1}{6} \): \[ 1 - \frac{32}{258} = \frac{258 - 32}{258} = \frac{226}{258} \] Thus, \[ \tan^{-1} \left( \frac{\frac{235}{258}}{\frac{226}{258}} \right) = \tan^{-1} \left( \frac{235}{226} \right) \] ### Step 5: Set up the final equation Now we have: \[ \tan^{-1} \left( \frac{235}{226} \right) + \tan^{-1} \left( \frac{1}{x} \right) = \frac{\pi}{4} \] Using the property: \[ \tan^{-1}(a) + \tan^{-1}(b) = \frac{\pi}{4} \implies ab = 1 \] Thus, \[ \frac{235}{226} \cdot \frac{1}{x} = 1 \implies x = \frac{235}{226} \] ### Final Answer \[ x = \frac{235}{226} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (3)(TRUE AND FALSE)|3 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (3)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (2)(FILL IN THE BLANKS)|2 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/ REASONS) |3 Videos

Similar Questions

Explore conceptually related problems

tan^(-1) . 3/5 +tan^(-1) . 1/4 = pi/2

If tan^(-1) 1/2 + tan^(-1) a = pi/4 then a = ______.

Prove that tan^(-1). 1/2 + tan^(-1) . 1/5 + tan^(-1). 1/8 = pi/4

Prove that tan^ (-1)( 1/3) +tan^(-1)( 1/5) + tan^(-1) (1/7 )+tan^(-1) (1/8) = pi/4

Solve : tan^(-1) 4x +tan^(-1)6x = pi/4

ML KHANNA-INVERSE CIRCULAR FUNCTIONS -Problem Set (3)(MULTIPLE CHOICE QUESTIONS)
  1. A solution of the equation tan^(-1)(1+x)+tan^(-1)(1-x)=(pi)/(2) is

    Text Solution

    |

  2. If sin^(-1)(x-x^2/2+x^3/4…..oo)+cos^(-1)(x^2-x^4/2+x^6/4-……oo)=pi/2 th...

    Text Solution

    |

  3. If cos^(-1)x gt sin^(-1) x, then

    Text Solution

    |

  4. If x^2+y^2+z^2=r^2, " then " tan^(-1) ""(xy)/(zr)+tan^(-1) ""(yz)/(xr)...

    Text Solution

    |

  5. If x+y+z=xyz, then tan^(-1)x+tan^(-1)y+tan^(-1)z=

    Text Solution

    |

  6. If xy +yz+zx=1 then tan^(-1)x+tan^(-1)y+tan^(-1)z=

    Text Solution

    |

  7. If 4sin^(-1)x+cos^(-1)x=pi, then x is equal to

    Text Solution

    |

  8. If (tan^(-1)x)^2+(cot^(-1)x)^2=(5pi^2)/8, then find xdot

    Text Solution

    |

  9. The value of tan^(2)(sec^(-1)2)+cot^(2)(cosec^(-1)3) is

    Text Solution

    |

  10. If (sin^(-1)x)^(2)+(cos^(-1)x)^(2)=(5pi^(2))/(8) then x =

    Text Solution

    |

  11. Find the set of values of parameter a so that the equation (sin^(-1)x)...

    Text Solution

    |

  12. If tan(x+y)=33, and x= tan^(-1)3, then: y=

    Text Solution

    |

  13. If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/2 then the value of x^(100)+y^(...

    Text Solution

    |

  14. a^3/2 cosec^2(1/2 tan^(-1)""a/b)+b^3/2 sec^2(1/2tan^(-1)""b/a) is equa...

    Text Solution

    |

  15. The number of the + ive integral solutions of tan^(-1)x+cos^(-1) "" y/...

    Text Solution

    |

  16. If x1 , x2 , x3 , x4 are roots of equation x^4-x^3 sin 2beta+x^2 cos 2...

    Text Solution

    |

  17. lim(nto oo) overset(n)underset(r=1)Sigma tan^(-1)(1/(2r^2)) is equal t...

    Text Solution

    |

  18. If ci >0 for i=1,\ 2,\ ,\ n , prove that tan^(-1)((c1x-y)/(c1y+x))+t...

    Text Solution

    |

  19. If sin^(-1)x+sin^(-1) y=(2pi)/3 and cos^(-1)x-cos^(-1) y= pi/3 ," then...

    Text Solution

    |

  20. If tan^(-1) ""1/4 + 2 tan^(-1)"" 1/5+tan^(-1)"" 1/6 + tan^(-1) ""1/x=p...

    Text Solution

    |