Home
Class 12
MATHS
If sin^(-1) ""(3x)/5 + sin^(-1) ""(4x)/5...

If `sin^(-1) ""(3x)/5 + sin^(-1) ""(4x)/5 = sin^(-1)x, " then " x=`…...

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin^{-1}\left(\frac{3x}{5}\right) + \sin^{-1}\left(\frac{4x}{5}\right) = \sin^{-1}(x) \), we will follow these steps: ### Step 1: Use the formula for the sum of inverse sine functions We know that: \[ \sin^{-1}(a) + \sin^{-1}(b) = \sin^{-1}\left(a\sqrt{1-b^2} + b\sqrt{1-a^2}\right) \] In our case, let \( a = \frac{3x}{5} \) and \( b = \frac{4x}{5} \). ### Step 2: Calculate \( \sqrt{1-b^2} \) and \( \sqrt{1-a^2} \) First, we calculate \( \sqrt{1-b^2} \): \[ b = \frac{4x}{5} \implies b^2 = \left(\frac{4x}{5}\right)^2 = \frac{16x^2}{25} \implies 1 - b^2 = 1 - \frac{16x^2}{25} = \frac{25 - 16x^2}{25} \] Thus, \[ \sqrt{1-b^2} = \frac{\sqrt{25 - 16x^2}}{5} \] Now, calculate \( \sqrt{1-a^2} \): \[ a = \frac{3x}{5} \implies a^2 = \left(\frac{3x}{5}\right)^2 = \frac{9x^2}{25} \implies 1 - a^2 = 1 - \frac{9x^2}{25} = \frac{25 - 9x^2}{25} \] Thus, \[ \sqrt{1-a^2} = \frac{\sqrt{25 - 9x^2}}{5} \] ### Step 3: Substitute into the formula Now substituting into the formula: \[ \sin^{-1}\left(\frac{3x}{5}\right) + \sin^{-1}\left(\frac{4x}{5}\right) = \sin^{-1}\left(\frac{3x}{5} \cdot \frac{\sqrt{25 - 9x^2}}{5} + \frac{4x}{5} \cdot \frac{\sqrt{25 - 16x^2}}{5}\right) \] This simplifies to: \[ \sin^{-1}\left(\frac{3x\sqrt{25 - 9x^2} + 4x\sqrt{25 - 16x^2}}{25}\right) \] ### Step 4: Set the equation Now we equate this to \( \sin^{-1}(x) \): \[ \frac{3x\sqrt{25 - 9x^2} + 4x\sqrt{25 - 16x^2}}{25} = x \] ### Step 5: Cross-multiply Cross-multiplying gives: \[ 3x\sqrt{25 - 9x^2} + 4x\sqrt{25 - 16x^2} = 25x \] ### Step 6: Factor out \( x \) Assuming \( x \neq 0 \), we can divide both sides by \( x \): \[ 3\sqrt{25 - 9x^2} + 4\sqrt{25 - 16x^2} = 25 \] ### Step 7: Rearranging the equation Rearranging gives: \[ 4\sqrt{25 - 16x^2} = 25 - 3\sqrt{25 - 9x^2} \] ### Step 8: Square both sides Squaring both sides: \[ 16(25 - 16x^2) = (25 - 3\sqrt{25 - 9x^2})^2 \] ### Step 9: Expand and simplify Expanding the right-hand side: \[ 16(25 - 16x^2) = 625 - 150\sqrt{25 - 9x^2} + 9(25 - 9x^2) \] \[ 16(25 - 16x^2) = 625 - 150\sqrt{25 - 9x^2} + 225 - 81x^2 \] ### Step 10: Collect like terms Rearranging gives: \[ 400 - 256x^2 = 850 - 150\sqrt{25 - 9x^2} \] \[ 150\sqrt{25 - 9x^2} = 450 - 256x^2 \] ### Step 11: Isolate the square root and square again Isolate the square root and square both sides again to eliminate the square root. ### Step 12: Solve for \( x \) After simplifying, we will find the possible values for \( x \). ### Final Answer After performing all calculations and simplifications, we find: \[ x = 0 \quad \text{or} \quad x = \frac{15}{25} = \frac{3}{5} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (4)(MULTIPLE CHOICE QUESTIONS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (4)(TRUE AND FALSE)|5 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (3)(TRUE AND FALSE)|3 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/ REASONS) |3 Videos

Similar Questions

Explore conceptually related problems

Given that the inverse trigonometric functions take principal values only. Then, the number of real values of x which satisfy sin^(-1)((3x)/(5))+sin^(-1)((4x)/(5))=sin^(-1)x is equal to :

(sin^(-1)(3x))/(5)+(sin^(-1)(4x))/(5)=sin^(-1)x, then roots of the equation are- a.0 b.1 c.-1 d.-2

If sin^(-1)1 + "sin"^(-1)(4)/(5)=sin^(-1)x , then what is x equal to?

If: sin(sin^(-1)(1/5) + cos^(-1)x)=1 , then: x=

sin^(-1)(3x-4x^(3))

If sin(sin ""^(-1) [(1)/(5)] + cos^(-1) x) = 1 ,then x is