Home
Class 12
MATHS
If tan^(-1)( (sqrt(1+x^2)-sqrt(1-x^2))/(...

If `tan^(-1)( (sqrt(1+x^2)-sqrt(1-x^2))/(sqrt((1+x^2))+sqrt((1-x^2))))`

A

`cos x`

B

`(pi)/4-(1/2)cos^(-1)(x^2)`

C

`tan x`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \tan^{-1} \left( \frac{\sqrt{1+x^2}-\sqrt{1-x^2}}{\sqrt{1+x^2}+\sqrt{1-x^2}} \right) \), we will follow a systematic approach. ### Step-by-Step Solution: 1. **Substitution**: Let \( x^2 = \cos(2\theta) \). Then, we can express \( \sqrt{1+x^2} \) and \( \sqrt{1-x^2} \) in terms of \( \theta \): \[ \sqrt{1+x^2} = \sqrt{1+\cos(2\theta)} = \sqrt{2\cos^2(\theta)} = \sqrt{2} \cos(\theta) \] \[ \sqrt{1-x^2} = \sqrt{1-\cos(2\theta)} = \sqrt{2\sin^2(\theta)} = \sqrt{2} \sin(\theta) \] **Hint**: Use trigonometric identities to simplify the square roots. 2. **Substituting into the expression**: Substitute these values back into the original expression: \[ \tan^{-1} \left( \frac{\sqrt{2} \cos(\theta) - \sqrt{2} \sin(\theta)}{\sqrt{2} \cos(\theta) + \sqrt{2} \sin(\theta)} \right) \] 3. **Factor out \( \sqrt{2} \)**: \[ = \tan^{-1} \left( \frac{\sqrt{2} (\cos(\theta) - \sin(\theta))}{\sqrt{2} (\cos(\theta) + \sin(\theta))} \right) \] \[ = \tan^{-1} \left( \frac{\cos(\theta) - \sin(\theta)}{\cos(\theta) + \sin(\theta)} \right) \] **Hint**: Simplifying fractions can often reveal useful identities. 4. **Using the tangent subtraction formula**: Recognize that: \[ \frac{\cos(\theta) - \sin(\theta)}{\cos(\theta) + \sin(\theta)} = \tan\left(\frac{\pi}{4} - \theta\right) \] Therefore, we can rewrite the expression: \[ = \tan^{-1} \left( \tan\left(\frac{\pi}{4} - \theta\right) \right) \] **Hint**: Recall that \( \tan^{-1}(\tan(x)) = x \) when \( x \) is in the principal range of the arctangent function. 5. **Final expression**: Thus, we have: \[ = \frac{\pi}{4} - \theta \] 6. **Finding \( \theta \)**: Since \( x^2 = \cos(2\theta) \), we can find \( \theta \): \[ 2\theta = \cos^{-1}(x^2) \implies \theta = \frac{1}{2} \cos^{-1}(x^2) \] 7. **Substituting back**: Therefore, we substitute \( \theta \) back into our expression: \[ = \frac{\pi}{4} - \frac{1}{2} \cos^{-1}(x^2) \] ### Conclusion: The final answer is: \[ \tan^{-1} \left( \frac{\sqrt{1+x^2}-\sqrt{1-x^2}}{\sqrt{1+x^2}+\sqrt{1-x^2}} \right) = \frac{\pi}{4} - \frac{1}{2} \cos^{-1}(x^2) \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (4)(TRUE AND FALSE)|5 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (4)(FILL IN THE BLANKS)|1 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (3)(FILL IN THE BLANKS)|4 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/ REASONS) |3 Videos

Similar Questions

Explore conceptually related problems

Differentiate tan^(-1)((sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2))))w*r.t.sin^(-1)((2x)/(1+x^(2)))

Prove that : tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2))))=(pi)/(4)+(1)/(2) cos^(-1)x^(2)

If y=tan^(-1) ((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))), x^2 le 1 , then find (dy)/(dx)

If y=tan^(-1)(((sqrt(1+x^(2))-sqrt(1-x^(2)))/((sqrt(1+x^(2))+sqrt(1-x^(2)))) find (dy)/(dx)

y=tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2)))), where -1

Differentiate tan^(-1){(sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2)))} with respect to cos^(-1)x^(2)

Solve for x:tan^(-1)[(sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2)))]=beta