Home
Class 12
MATHS
If x=sin(2tan^(-1)2), y = sin (1/2 tan^(...

If `x=sin(2tan^(-1)2), y = sin (1/2 tan^(-1)"4/3)`, then

A

`x gt y and y^2 =1-x`

B

`x gt y`

C

`x gt y and y^2 =x`

D

`y^2=1+x`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( x \) and \( y \) using the given expressions: 1. **Finding \( x \):** \[ x = \sin(2 \tan^{-1}(2)) \] Let \( \theta = \tan^{-1}(2) \). Then, we have: \[ \tan(\theta) = 2 \] Using the double angle formula for sine: \[ \sin(2\theta) = 2 \sin(\theta) \cos(\theta) \] We need to find \( \sin(\theta) \) and \( \cos(\theta) \). From \( \tan(\theta) = \frac{\text{opposite}}{\text{adjacent}} = \frac{2}{1} \), we can find the hypotenuse: \[ \text{hypotenuse} = \sqrt{2^2 + 1^2} = \sqrt{5} \] Thus: \[ \sin(\theta) = \frac{2}{\sqrt{5}}, \quad \cos(\theta) = \frac{1}{\sqrt{5}} \] Now substituting these into the double angle formula: \[ x = 2 \sin(\theta) \cos(\theta) = 2 \left(\frac{2}{\sqrt{5}}\right) \left(\frac{1}{\sqrt{5}}\right) = \frac{4}{5} \] 2. **Finding \( y \):** \[ y = \sin\left(\frac{1}{2} \tan^{-1}\left(\frac{4}{3}\right)\right) \] Let \( \beta = \tan^{-1}\left(\frac{4}{3}\right) \). Then: \[ \tan(\beta) = \frac{4}{3} \] Again, we find the hypotenuse: \[ \text{hypotenuse} = \sqrt{4^2 + 3^2} = \sqrt{25} = 5 \] Thus: \[ \sin(\beta) = \frac{4}{5}, \quad \cos(\beta) = \frac{3}{5} \] Using the half angle formula: \[ y = \sin\left(\frac{\beta}{2}\right) = \sqrt{\frac{1 - \cos(\beta)}{2}} = \sqrt{\frac{1 - \frac{3}{5}}{2}} = \sqrt{\frac{\frac{2}{5}}{2}} = \sqrt{\frac{1}{5}} = \frac{1}{\sqrt{5}} \] 3. **Comparing \( x \) and \( y \):** We have: \[ x = \frac{4}{5}, \quad y = \frac{1}{\sqrt{5}} = \frac{1}{\sqrt{5}} \approx 0.447 \] Since \( \frac{4}{5} = 0.8 \) and \( 0.8 > 0.447 \), we find that \( x > y \). 4. **Verifying the relationship:** To show \( y^2 = 1 - x \): \[ y^2 = \left(\frac{1}{\sqrt{5}}\right)^2 = \frac{1}{5} \] And: \[ 1 - x = 1 - \frac{4}{5} = \frac{1}{5} \] Thus, \( y^2 = 1 - x \). ### Final Results: - \( x = \frac{4}{5} \) - \( y = \frac{1}{\sqrt{5}} \) - \( y^2 = 1 - x \)
Promotional Banner

Topper's Solved these Questions

  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (4)(TRUE AND FALSE)|5 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (4)(FILL IN THE BLANKS)|1 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (3)(FILL IN THE BLANKS)|4 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/ REASONS) |3 Videos

Similar Questions

Explore conceptually related problems

sin (tan ^(-1)2x)

If x=sin(2tan^(-1)3)and y=sin((1)/(2)tan^(-1)(4/3)) , then

If x=sin(2tan^(-1)2sqrt3)and y=sin((1)/(2)tan^(-1).(12)/(5)) , then

If: A= tan^(-1)x , then: sin 2A=

Given that 0<=x<=(1)/(2), and A=tan(sin^(-1)((x)/(sqrt(2))+sqrt((1-x^(2))/(2)))-sin^(-1)x) .If B=tan(4tan^(-1)((1)/(5))-tan^(-1)((1)/(239))) ,then find the value of A " and " B

If tan(sin^(-1)sqrt(1-x^2))=sin(tan^(-1)2) then x is

If y=2 tan ^(-1) x + sin^(-1) ((2x)/(1+x^(2))) " then: " y in