Home
Class 12
MATHS
If A=2 tan^(-1) (2sqrt2-1) and B=3 sin^(...

If `A=2 tan^(-1) (2sqrt2-1) and B=3 sin^(-1)(1/3) + sin^(-1) (3/5)`, then

A

`A gt B`

B

`A lt B`

C

`A=B`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expressions for \( A \) and \( B \) given by: \[ A = 2 \tan^{-1}(2\sqrt{2} - 1) \] \[ B = 3 \sin^{-1}\left(\frac{1}{3}\right) + \sin^{-1}\left(\frac{3}{5}\right) \] ### Step 1: Evaluate \( A \) 1. **Calculate \( \tan^{-1}(2\sqrt{2} - 1) \)**: - Let \( x = 2\sqrt{2} - 1 \). - We need to find \( \tan^{-1}(x) \). 2. **Approximate \( x \)**: - \( 2\sqrt{2} \approx 2 \times 1.414 = 2.828 \) - So, \( x \approx 2.828 - 1 = 1.828 \). 3. **Compare \( x \) with \( \sqrt{3} \)**: - \( \sqrt{3} \approx 1.732 \). - Since \( 1.828 > 1.732 \), we have \( \tan^{-1}(1.828) > \tan^{-1}(\sqrt{3}) \). 4. **Find \( \tan^{-1}(\sqrt{3}) \)**: - \( \tan^{-1}(\sqrt{3}) = \frac{\pi}{3} \). 5. **Thus, \( \tan^{-1}(2\sqrt{2} - 1) > \frac{\pi}{3} \)**: - Therefore, \( 2 \tan^{-1}(2\sqrt{2} - 1) > 2 \cdot \frac{\pi}{3} = \frac{2\pi}{3} \). So, we conclude that: \[ A > \frac{2\pi}{3} \] ### Step 2: Evaluate \( B \) 1. **Calculate \( 3 \sin^{-1}\left(\frac{1}{3}\right) \)**: - Let \( y = \sin^{-1}\left(\frac{1}{3}\right) \). - We know \( \sin(y) = \frac{1}{3} \). 2. **Use the triple angle formula for sine**: - \( 3 \sin^{-1}(x) = \sin^{-1}(3x - 4x^3) \). - Here, \( x = \frac{1}{3} \). - Calculate \( 3 \cdot \frac{1}{3} - 4 \left(\frac{1}{3}\right)^3 = 1 - \frac{4}{27} = \frac{27}{27} - \frac{4}{27} = \frac{23}{27} \). 3. **Thus, \( 3 \sin^{-1}\left(\frac{1}{3}\right) = \sin^{-1}\left(\frac{23}{27}\right) \)**. 4. **Now, add \( \sin^{-1}\left(\frac{3}{5}\right) \)**: - We know \( \frac{3}{5} = 0.6 \), and \( \sin^{-1}\left(\frac{3}{5}\right) \) is less than \( \sin^{-1}\left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{3} \). 5. **Estimate \( B \)**: - Since \( \frac{23}{27} < 1 \), we can find \( B < \sin^{-1}\left(1\right) = \frac{\pi}{2} \). ### Step 3: Compare \( A \) and \( B \) - From our evaluations: - \( A > \frac{2\pi}{3} \) - \( B < \frac{\pi}{2} \) Since \( \frac{2\pi}{3} \) is greater than \( \frac{\pi}{2} \), we conclude that: \[ A > B \] ### Final Answer Thus, the final result is: \[ A > B \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (4)(TRUE AND FALSE)|5 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (4)(FILL IN THE BLANKS)|1 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (3)(FILL IN THE BLANKS)|4 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/ REASONS) |3 Videos

Similar Questions

Explore conceptually related problems

If A=9tan^(-1)(sqrt(2)-1) and B=3sin^(-1)((1)/(3))+sin^(-1)((3)/(5)) then

If A = 2 tan^(-1) (2 sqrt2 -1) and B = 3 sin^(-1) ((1)/(3)) + sin^(-1) ((3)/(5)) , then which is greater ?

The greater of the two angles A=2tan^(-1)(2sqrt(2)-1) and B=3sin^(-1)(1/3)+sin^(-1)(3/5)i s ____.

sin^(-1) (-1/2) + tan^(-1) (sqrt3) =

If x=sin(2tan^(-1)2sqrt3)and y=sin((1)/(2)tan^(-1).(12)/(5)) , then

sin^-1(sqrt(3)/2) - sin^-1(1/2)

If alpha,beta and gamma are the three angles with alpha=2tan^(-1)(sqrt(2)-1);beta=3sin^(-1)((1)/(sqrt(2)))+sin^(-1)(-(1)/(2)) and gamma=cos^(-1)((1)/(3)), then