Home
Class 12
MATHS
In a triangle ABC, the side c has two va...

In a triangle ABC, the side c has two values , then `((a+b)^2)/(1+cosC)+((b-a)^2)/(1-cos C) = (2a^2)/(sin^2A)` True or false ?

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the statement \[ \frac{(a+b)^2}{1+\cos C} + \frac{(b-a)^2}{1-\cos C} = \frac{2a^2}{\sin^2 A} \] is true or false, we will analyze both sides step by step. ### Step 1: Analyze the Left-Hand Side (LHS) The left-hand side of the equation is given by: \[ LHS = \frac{(a+b)^2}{1+\cos C} + \frac{(b-a)^2}{1-\cos C} \] To combine these two fractions, we need a common denominator. The common denominator will be \((1+\cos C)(1-\cos C) = 1 - \cos^2 C = \sin^2 C\). ### Step 2: Rewrite the LHS with the Common Denominator Now, we can rewrite the LHS as: \[ LHS = \frac{(a+b)^2(1-\cos C) + (b-a)^2(1+\cos C)}{\sin^2 C} \] ### Step 3: Expand the Numerator Next, we expand the numerator: 1. Expand \((a+b)^2(1-\cos C)\): \[ (a+b)^2(1-\cos C) = (a^2 + 2ab + b^2)(1 - \cos C) = a^2 + 2ab + b^2 - a^2\cos C - 2ab\cos C - b^2\cos C \] 2. Expand \((b-a)^2(1+\cos C)\): \[ (b-a)^2(1+\cos C) = (b^2 - 2ab + a^2)(1 + \cos C) = b^2 - 2ab + a^2 + b^2\cos C - 2ab\cos C + a^2\cos C \] ### Step 4: Combine the Expanded Terms Now, combine the expanded terms: \[ LHS = \frac{(a^2 + 2ab + b^2 - a^2\cos C - 2ab\cos C - b^2\cos C) + (b^2 - 2ab + a^2 + b^2\cos C - 2ab\cos C + a^2\cos C)}{\sin^2 C} \] Combine like terms: \[ = \frac{2a^2 + 2b^2 + 0 - 4ab\cos C}{\sin^2 C} \] ### Step 5: Simplify the LHS Thus, we have: \[ LHS = \frac{2(a^2 + b^2 - 2ab\cos C)}{\sin^2 C} \] ### Step 6: Use the Cosine Rule Using the cosine rule, we know that: \[ c^2 = a^2 + b^2 - 2ab\cos C \] So, we can rewrite the LHS as: \[ LHS = \frac{2c^2}{\sin^2 C} \] ### Step 7: Analyze the Right-Hand Side (RHS) The right-hand side is: \[ RHS = \frac{2a^2}{\sin^2 A} \] ### Step 8: Establish the Relationship For the equality \(LHS = RHS\) to hold, we need: \[ \frac{2c^2}{\sin^2 C} = \frac{2a^2}{\sin^2 A} \] This implies: \[ \frac{c^2}{\sin^2 C} = \frac{a^2}{\sin^2 A} \] ### Step 9: Conclusion This equality can hold true under certain conditions, particularly when the triangle has specific properties (like being isosceles or having certain angles). Therefore, the statement can be considered **True** under the condition that \(C\) has two values.
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (1)(FILL IN THE BLANKS)|10 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (2)(MULTIPLE CHOICE QUESTIONS)|49 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Self Assessment Test (Multiple Choise Questions)|34 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/REASON) |1 Videos
  • RECTANGULAR CARTESIAN CO-ORDINATE SYSTEM AND THE STRAIGHT LINE

    ML KHANNA|Exercise COMPREHENSION |11 Videos

Similar Questions

Explore conceptually related problems

In a triangle ABC , acosB + b cosC + c cosA =(a+b+c)/2 then

In any triangle ABC, prove that: (1+cos(A-B)cos C)/(1+cos(A-C)cos B)=(a^(2)+b^(2))/(a^(2)+c^(2))

In a triangle ABC, if a, b, c are in A.P. and (b)/(c) sin 2C + (c)/(b) sin 2B + (b)/(a) sin 2A + (a)/(b) sin 2B = 2 , then find the value of sin B

In any triangle ABC, (a+b)^2 sin^2 ((C )/(2))+(a-b)^2 cos^2 ((C )/(2))= .

In any triangle ABC, prove that: a cos A+b cos B+c cos C=2a sin B sin C

In any triangle ABC,show that: 2a cos((B)/(2))cos((C)/(2))=(a+b+c)sin((A)/(2))

In triangle ABC , prove that a(cosC-cosB)=2(b-c)cos^2.(A)/(2) .